
Lab 6
Part B – Code generation for functions

Objective

• Add functions to MiniC.
• Understand and implement memory layout (stack) for functions.

Getting started At this point, you should have a compiler with operational typechecking for functions.
Run the command git pull (you may need to run git commit first) to get new test files for functions (in

TP06/).

6.1 Test your typechecker

Make sure that make test-typecheckworks on various tests that include functions.

6.2 Code Generation

Some advice:

• The course slides contain useful information !

• Getting the code to “mostly work” can seem easy, but debugging issues in the generated code is often
tricky. Start small, and test properly each feature before you move to the next one. As much as possible,
write tests before you write the Python code.

• Your generated code should be compatible with GCC’s generated code. Your functions should be able to
call GCC’s functions, and vice-versa. To test this, you need to use // LINKARGS $dir/lib/file.c. An
example is given in TP06/tests/provided/basic-functions/test_extern.c (it tests function calls
from your code to GCC’s code, but the other way around should be tested too), and the whole mechanism
is further explained in Lab 6 Part A.

• Register-saving and restoring code is hard to test: you should write functions that use all registers to
make sure any improperly saved register is detected, by calling external functions written manually
in assembly using LINKARGS (see TP06/tests/provided/basic-functions/test_extern_asm.c),
and/or by calling functions whose code puts a lot of pressure on registers.

• Code coverage is not a good way to evaluate the quality of your testsuite in this lab: the Python code is
easy to cover, but corner-cases (e.g. a register improperly saved and restored) may happen regardless of
whether some Python code is covered.

EXERCISE #1 Ï Code generation for functions
Implement code generation for functions definition and call.

The skeleton provided already generates part of the code needed for function declaration, to set up and re-
store fp and sp: see _print_code in Lib/FunctionData.py. This is where the size of the stack is already in-
creased to take into account callee/caller-saved registers (see the line around fo += len(S[1:]) + len(T)
in the above source file).

So the only register-saving and restoring implementations you have to code will be for ti and si registers.
The way fp and sp are saved and restored in the file referenced above must be taken into account in the
respective offsets.

A check-list of things to be implemented (it is advised but not mandatory to do it in this order):

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 1/2

6.2. CODE GENERATION LAB 6. PART B – CODE GENERATION FOR FUNCTIONS

• Proper return expr statement (can be tested without function calls using the return value of the main
function, using // EXECCODE in your test file);

• Registers si (callee-saved) saving and restoring at the beginning and end of function bodies;

• Implementation of function calls, using call function;

• Getting the result from a function after the call function instruction: read a0 to a temporary;

• Registers ti (caller-saved) saving and restoring before and after function calls;

• Passing arguments: generate code that evaluates actual parameters values to temporaries, and then code
that writes their value to ai registers;

• Reading arguments within a function by reading their value from ai registers to temporaries at the be-
ginning of function bodies.

EXERCISE #2 Ï Possible extensions
You may implement the following:

• Functions with more than 8 arguments. The 9th argument and following are passed on the top of the
stack.

• Save and restore registers that are actually used only. If a function does not use an si register, it need not
be saved and restored. If a ti register isn’t live when a function is called, this function call need not save
and restore it.

• Use ai registers as general purpose registers within functions, but keep them special at function call
time. Slides given in the course explain how to do this (use a temporary per ai register, make sure
all these temporaries are in conflict, perform graph coloring, and then hardcode the mapping of these
temporaries to the correct register).

Laure Gonnord, Matthieu Moy, Gabriel Radanne et al. 2/2

	Part B – Code generation for functions
	Test your typechecker
	Code Generation

