Compilation and Program Analysis (#2): **Semantics**

Yannick Zakowski

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

Intro

Contact me:

web:<https://perso.ens-lyon.fr/yannick.zakowski/>

email:<yannick.zakowski@ens-lyon.fr>

Credits: JC Filliâtre / JC Fernandez / Nielson-Nielson-Hankin / Laure Gonnord / Ludovic Henrio

Note on organisation:

- 1: Course
- 2: **exercises and proofs during the course** ;

3: **exercises and proofs done at the end the course if we have the time**

1 [Semantics: On the Meaning of Programs](#page-2-0)

- 2 [Operational semantics for mini-while](#page-15-0)
- 3 [Comparing the different semantics](#page-30-0)

An old story

As the aim of a programming language is to describe processes, I regard the definition of its semantics as the design, the description of a machine that has as reaction to an arbitrary process description in this language the actual execution of this process. One could also give the semantic definition of the language by stating all the rules according to which one could execute a process, given its description in the language. Fundamentally, there is nothing against this, provided that nothing is left to my imagination as regards the way and the order in which these rules are to be applied. (...) In the design of a language this concept of the "defining machine" should help us to ensure the unambiguity of semantic interpretation of texts.

(Dijkstra, *On the Design of Machine Independent Programming Languages*, 1961)

Book of the week

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-202[5](#page-4-0) \leftarrow 5/37 \rightarrow

Different degrees of precision

Semi-formal specification in natural language

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [6](#page-5-0)/37 \rightarrow

Different degrees of precision

Formal semantics **Concept** (instances) inst **COL** {func cl", glob v", tab i', mem i'} talénst ÷. meminst ::= (closures) \overline{c} = {inst i, code f } (where f is not an import and has all exports ex^* erased) $\frac{1}{2}$ $\frac{1}{2}$ (values) (administrative operators) : == ... | trap | call o' | label, {e' } e' end | local, {i; v' } e' end (local contexts) $v = v^* \cup v^*$ $\frac{L^2}{L^{k+1}}$ $v = -v^*$ label. $\{e^*\}$ L^2 end e^* Reduction $\delta\colon \mathbb{R}^n \colon \mathbb{C}^n \hookrightarrow_{\mathbb{R}} \mathbb{R}^n \mathbb{R}^n \colon \mathbb{C}^n$ $\mathbf{s}; \mathbf{u}^*, \mathbf{c}^* \hookrightarrow_i \mathbf{s}'; \mathbf{u}^{\prime *} ; \mathbf{c}^{\prime *}$ $\mathbf{s}; \mathbf{u}^*, \mathbf{c}^* \hookrightarrow_i \mathbf{s}'; \mathbf{u}'^*; \mathbf{c}'^*$ $\frac{x_1v_1; v_1 \rightarrow x_1v_1; v_2 \rightarrow x_2v_2; v_3 \rightarrow x_3v_3; v_4 \rightarrow x_4v_4; v_5 \rightarrow x_5v_4; v_5 \rightarrow v_6v_5; v_6 \rightarrow v_7v_5; v_7 \rightarrow v_8v_7; v_8 \rightarrow v_8v_8; v_9 \rightarrow v_9v_9; v_9 \rightarrow v_9v_9; v_1 \rightarrow v_1v_3; v_1 \rightarrow v_$ L^0 trap \longrightarrow trap if $L^0\neq |.|$ $(t.\text{const }c)$ $t.\text{unco}$ \longrightarrow $t.\text{const }$ anop. (c) $(t.\text{const }c_1)$ $(t.\text{const }c_2)$ $t.\text{binop} \rightarrow t.\text{const }c$ if $c = \text{binop}_x(c_1, c_2)$ $(t.\text{const }c_1)$ $(t.\text{const }c_2)$ $t.\text{binop}$ \longrightarrow trap otherwise (*t.comst c) t.testop* \rightarrow **i32.comst** testop₄(c) $(t, const \nco)$ $(t, const \nco)$ $t, relov \rightarrow$ 132.const $relov, (c, c)$ $\begin{array}{rcl} (t_1.\texttt{const}\ c)\ t_2.\texttt{convert}\ t_1.\mathit{ex}^{\dagger} &\hookrightarrow& t_2.\texttt{const}\ c'\\ (t_1.\texttt{const}\ c)\ t_2.\texttt{convert}\ t_1.\mathit{ex}^{\dagger} &\hookrightarrow& \texttt{trap} \end{array}$ if $c'=\text{cvt}_{\ell_1,\ell_2}^{ss^7}(c)$ otherwise $(t_1$.const c) t_2 .reinterpret $t_1 \longrightarrow t_2$.const $const_{t_2}(bits_{t_1}(c))$ unreachable \rightarrow tran $mop \rightarrow$ $=$ drop -al v_1 v_2 (i32.const 0) select -4 10 $(32 \cdot \text{const.})$ is select
 $(32 \cdot \text{const.}) + 1$ select -4 E. $\begin{array}{ccc} v^n\text{ block } (t_1^n \to t_2^n) \text{ } c^* \text{ end } & \mapsto & \text{ label}_n(c) \text{ } v^n \text{ } c^* \text{ end } \\ v^n\text{ loop } (t_1^n \to t_2^n) \text{ } c^* \text{ end } & \mapsto & \text{ label}_n(\text{loop } (t_1^n \to t_2^n) \text{ } c^* \text{ end }) \text{ } v^n \text{ } c^* \text{ end } \end{array}$ $(132 \text{ const } 0)$ if $t \in \mathbb{C}$ else $c \in \mathbb{C}$ and \longrightarrow block $t \in \mathbb{C}$ and (i32, const $k + 1$) if if e^2 else e^2 end \rightarrow block if e^2 end label./c") o" end = - = = =" $label_{c}$ abel. $\{e^*\}$ trap end \rightarrow trap
abel. $\{e^*\}$ $L^2[e^a]$ (br ii) end \rightarrow e^a e $(132 \text{ const } 0)$ (br if $i) \rightarrow$ $(32 \text{const } k + 1)$ (briff j) \hookrightarrow br j $($ i32.const k) (br.table $j_1^{\pm} j_2^{\pm} j_3^{\pm}$) \rightarrow br j $(32 \text{.const } k + n)$ (br.table $j_1^k j$) \rightarrow br j s_1 call $j \longrightarrow_j$ call $s_{\text{max}}(i,j)$ s_1 (132.const j) call indirect $t f \rightarrow t$, call $s_{ab}(t, j)$ if $s_{ab}(i,j)_{\text{code}} = (\text{func } tf \text{ local } t^* e^*)$ s : (132.const i) call indirect $it \rightarrow$. trap otherwise v^n (call $c) \rightarrow \text{local}_{m_1^2} c_{\text{local}}^* v^n$ (t.const $0)^k$ } block $(c \rightarrow t_2^m)$ c^* end end $local_{\alpha}\{i; v_{1}^{a}\}$ o" and \longrightarrow o" \ldots if $cl_{code} = (\text{func } (t_1^n \rightarrow t_2^m) \text{ local } t^k e^*)$ $local_i(i; v_i^*)$ trap end \rightarrow trap local, $\{i; v_i^*\}$ $L^2[v^n]$ return end \longrightarrow v_1' v v_2^k ; get local $j \longrightarrow$ electric (set local i) -> electric v (tee local \vec{v}) \rightarrow vv (set local \vec{v}) s; get_global $j \leftrightarrow_j \pi_{\text{min}}(i, j)$ $s; v$ (set global j) \rightarrow s ; c if $s' = s$ with $\text{glob}(i, j) = v$ s ; (i32.const k) (t.load a o) \rightarrow , t.const const_s(b' if $s_{\text{max}}(i, k + o, |t|) = b^*$ s ; (32.const k) (t.load tp.sz a o) \rightarrow , t.const const; (b') if $s_{\text{non}}(i, k + a, |tp|) = b^*$ s : (i32.const k) (t.load to s z⁷ a o) \rightarrow , trap otherwise s ; (132.const k) (t.const c) (t.store a o) \rightarrow s' ; s' if $s' = s$ with mem $[i, k + \alpha, |t|] = \text{bits}_r^{[t]}(c)$ s ; (32.const k) (t.const c) (t.store tp a o) \rightarrow , s' ; c if $s' = s$ with mem $(i, k + o, |tp|) = \text{bits}_s^{(tp)}(c)$ e (232 const k) (f.const c) (f.store (p) a g) say tranotherwise s ; current_memory \rightarrow ; i32.const $|s_{\text{max}}(i,*)|/64 \text{ Ki}$ s_1 (132.const k) grow memory \hookrightarrow s'_1 132.const $|\lambda_{\text{test}}(i,*)|/64$ Ki if $s' = s$ with $\text{mem}(i,*) = \lambda_{\text{test}}(i,*)$ (0)^{4-61 Ki} s ; (32.const k) grow.memory \rightarrow 32.const (-1)

Figure 2. Small-step reduction rules

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [7](#page-6-0)/37 \rightarrow

Different degrees of precision

Mechanized formal semantics in a proof assistant

```
Inductive step: state -> trace -> state -> Prop :=
| step skip seq: forall f s k sp e m,
     sten (State f Sskin (Kseq s k) sp e m)
       E0 (State f s k sp e m)
I step skip block: forall f k sp e m.
     sten (State f Sskin (Kblock k) sn e m)
       E0 (State f Sskin k sn e m)
I step skip call: forall f k sp e m m'.
     is call cont k \rightarrowMem. free m sp \theta f. (fn_stackspace) = Some m' \Rightarrowstep (State f Sskip k (Votr sp Ptrofs, zero) e m)
       E0 (Returnstate Vundef k m')
| step_assign: forall f id a k sp e m v,
     eval expr sp e m a v \rightarrowstep (State f (Sassign id a) k sp e m)
       E0 (State f Sskip k sp (PTree.set id v e) m)
I step store: forall f chunk addr a k sp e m vaddr v m'.
     eval expr sp e m addr vaddr ->
     eval expr sp e m a v ->
     Mem.storey chunk m vaddr v = Some m' \Rightarrowstep (State f (Sstore chunk addr a) k sp e m)
       E0 (State f Sskip k sp e m')
 | step_call: forall f optid sig a bl k sp e m vf vargs fd,
     eval expr sp e m a vf \rightarroweval exprlist sp e m bl vargs ->
     Genv.find_funct ge vf = Some fd ->
     funsig fd = sig \rightarrowstep (State f (Scall optid sig a bl) k sp e m)
```
Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 $\leftarrow 8/37 \rightarrow$ $\leftarrow 8/37 \rightarrow$ $\leftarrow 8/37 \rightarrow$

Different kinds of semantics

Let us first define an abstract syntax for our language, via what is usually referred as **Backus–Naur form** (BNF).

Example : arithmetic expressions, $x \in V$ a set of variables

 $e ::= x | n | e + e | e * e | ...$

This is just another view of the AST obtained after parsing.

Different kinds of semantics

Let us first define an abstract syntax for our language, via what is usually referred as **Backus–Naur form** (BNF).

Example : arithmetic expressions, $x \in V$ a set of variables

 $e ::= x | n | e + e | e * e | ...$

This is just another view of the AST obtained after parsing. This abstract syntax typically forms the basis to define the semantics.

Semantics comes in different shapes:

- **•** axiomatic
- **o** denotational
- by translation

operational semantics (natural, structural)

Axiomatic Semantics (ex: Floyd-Hoare logic)

(*An axiomatic basis for computer programming*, Hoare, 1969)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [10](#page-11-0) / 37 \rightarrow

Axiomatic Semantics (ex: Floyd-Hoare logic)

(*An axiomatic basis for computer programming*, Hoare, 1969)

Hoare triples states invariants of the global state:

 ${P} i {Q}$

"if P is true before the instruction i, then Q is true afterwards"

Example of a valid triple:

$$
\{x \ge 0\} \ x := x + 1 \ \{x > 0\}
$$

Proved by application of the rule for assignment:

$$
\{P[x \leftarrow E]\} \ x := E \ \{P(x)\}
$$

▶ A semantics of specifications.

 \blacktriangleright See also: separation logic

Denotational Semantics

Associates to an expression e its mathematical meaning $\llbracket e \rrbracket$ in a semantic domain D.

Example : arithmetic expressions.

 $e ::= x | n | e + e | e * e | ...$

For such a simple language, a simple domain does the job: $\mathcal{D} = \mathsf{env} \to \mathbb{N}$

$$
\llbracket x \rrbracket \rho = \rho(x)
$$

$$
\llbracket n \rrbracket \rho = \mathcal{N}(n)
$$

$$
\llbracket e_1 + e_2 \rrbracket \rho = \llbracket e_1 \rrbracket \rho + \llbracket e_2 \rrbracket \rho
$$

$$
\llbracket e_1 * e_2 \rrbracket \rho = \llbracket e_1 \rrbracket \rho \times \llbracket e_2 \rrbracket \rho
$$

Beyond arithmetic expressions, things get more involved: in what domain should we interpret the lambda calculus?

Semantics by translation

(*Definitional interpreters for higher-order programming languages*, Reynolds, 1972)

We can define the semantics of a language by translation into a language whose semantics is already known.

$$
[\![x = v + v']\!] = y = \text{get } v;
$$

$$
z = \text{get } v';
$$

$$
x = y + z
$$

 \blacktriangleright Inherit for free the meta-theory from the host language. \triangleright Not always very illuminating: to the extreme, R's language is defined by the result of its compiler...

Operational Semantics

We describe a process of evaluation for the computations. The approach is more syntactic: it operates directly on the abstract syntax.

"natural" or "*big-steps semantics*", evaluates the program in one step (a derivation tree)

 $e \Downarrow v$

"by reduction" or "*small-steps semantics*": a relation describes an atomic reduction, and the semantics consider the transitive reflexive closure of this relation.

$$
e \to e_1 \to e_2 \to \cdots \to v
$$

Note: although operational by nature, does not need be executable.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [13](#page-14-0)/37 \rightarrow

- 2 [Operational semantics for mini-while](#page-15-0)
- 3 [Comparing the different semantics](#page-30-0)

mini-while

$$
e \in \mathcal{A} ::= x \mid n \mid e + e \mid e * e \mid \dots
$$

(abstract) grammar:

$S(Smt)$::= $x := e$	assign
$skip$	skip	do nothing
$S_1; S_2$	sequence	
$if b$ then S_1 else S_2 test		
$while b$ do S done	loop	

Semantics of expressions

We consider a very simple memory model: a store

$$
\sigma \in State = Var \rightarrow \mathbf{Z}.
$$

Access is written $\sigma(x)$, and update $\sigma[y \mapsto n]$.

Semantics of arithmetic expressions – Val: $A \rightarrow State \rightarrow \mathbf{Z}$: On **board**

$$
Val(n, \sigma) = \mathcal{N}(n)
$$

$$
Val(x, \sigma) =
$$

$$
Val(e + e', \sigma) =
$$

$$
Val(e \times e', \sigma) =
$$

Note: Denotational or natural semantics?

Semantics of boolean expressions

$Val: \mathcal{B} \rightarrow State \rightarrow \mathbf{Z}$ Exercise at the end of course $(b ::= tt | f f | x | b \wedge b | ... | e \le e | ...)$

Warm up: first properties

Semantics of arithmetic expressions

Show the two following properties (first one at the end of the course):

1 For any $e \in A$, and σ, σ' two states. Show that if $(\forall x \in Vars(e), \sigma(x) = \sigma'(x))$, then $Val(e, \sigma) = Val(e, \sigma')$. **Exercise at the end of course**

2 Let
$$
e, e' \in \mathcal{A}
$$
, show that:

$$
Val(e[e'/x], \sigma) = Val(e, \sigma[x \mapsto Val(e', \sigma)])
$$

now

Natural semantics (big step) for mini-while 1/2

In one step from the source program to the final result. \downarrow : $Stm \times State \rightarrow State$

$$
(x := e, \sigma) \Downarrow \sigma[x \mapsto Val(e, \sigma)]
$$

 $(\textsf{skip}, \sigma) \Downarrow \sigma$

$$
\frac{(S_1,\sigma) \Downarrow \sigma' \qquad (S_2,\sigma') \Downarrow \sigma''}{((S_1;S_2),\sigma) \Downarrow \sigma''}
$$

Natural semantics (big step) for mini-while 2/2

$$
Val(b, \sigma) = tt \t (S_1, \sigma) \Downarrow \sigma'
$$

(if *b* then S_1 else S_2, σ) $\Downarrow \sigma'$

$$
Val(b, \sigma) = ff \t (S_2, \sigma) \Downarrow \sigma'
$$

(if *b* then S_1 else S_2, σ) $\Downarrow \sigma'$

$$
Val(b, \sigma) = tt
$$
?
(while *b* do *S* done, σ) \Downarrow ?

$$
Val(b, \sigma) = ff
$$

(while *b* do *S* done, σ) \Downarrow ?

Natural semantics (big step) for mini-while 2/2

$$
Val(b, \sigma) = tt \t (S_1, \sigma) \Downarrow \sigma'
$$

(if *b* then S_1 else S_2, σ) $\Downarrow \sigma'$

$$
Val(b, \sigma) = ff \t (S_2, \sigma) \Downarrow \sigma'
$$

(if *b* then S_1 else S_2, σ) $\Downarrow \sigma'$

$$
\frac{Val(b,\sigma)=tt \qquad (S,\sigma) \Downarrow \sigma' \qquad (\text{while }b\text{ do }S\text{ done},\sigma')\Downarrow \sigma''}{(\text{while }b\text{ do }S\text{ done},\sigma) \Downarrow \sigma''}
$$

$$
\frac{Val(b, \sigma) = ff}{(\text{while } b \text{ do } S \text{ done}, \sigma) \Downarrow \sigma}
$$

Example

Derive the semantics (leaves are axioms, nodes are rules) of:

- $\bullet x := 2$; while $x > 0$ do $x := x 1$ done
- $x := 2$; while $x > 0$ do $x := x + 1$ done

Using the semantics to prove properties

Example: determinism

In mini-while there is a single way to evaluate a program.

Theorem: Determinism

For all S, for all σ , σ' , σ'' : If $(S, \sigma) \Downarrow \sigma'$ and $(S, \sigma) \Downarrow \sigma''$ then $\sigma' = \sigma''$.

What should we induct on? **do the proof**

Structural Op. Semantics (SOS = small step) for mini-while 1/2

(*A Structural Approach to Operational Semantics*, Plotkin, late 70th)

We perform atomic reduction steps.

 \rightarrow : Stm \times State \rightarrow Stm \times State

$$
(x := e, \sigma) \to \sigma[x \mapsto Val(e, \sigma)]
$$

 $(\textsf{skip}, \sigma) \nrightarrow$

$$
\frac{(S_1, \sigma) \rightarrow (S'_1, \sigma')}{((\text{skip}; S_2), \sigma) \rightarrow (S_2, \sigma)} \quad \frac{(S_1, \sigma) \rightarrow (S'_1, \sigma')}{((S_1; S_2), \sigma) \rightarrow (S'_1; S_2, \sigma')}
$$

Structural Op. Semantics (SOS = small step) for mini-while 2/2

$$
Val(b, \sigma) = tt
$$

(if *b* then S_1 else S_2, σ) \rightarrow (S_1, σ)

$$
Val(b, \sigma) = ff
$$

(if *b* then S_1 else S_2, σ) \rightarrow (S_2, σ)

(while b do S done, σ) \rightarrow

Structural Op. Semantics (SOS = small step) for mini-while 2/2

$$
Val(b, \sigma) = tt
$$

(if *b* then S_1 else S_2, σ) \rightarrow (S_1, σ)

$$
Val(b, \sigma) = ff
$$

(if *b* then S_1 else S_2, σ) \rightarrow (S_2, σ)

(while b do S done, σ) \rightarrow

(if b then $(S; \text{while } b \text{ do } S \text{ done})$ else skip, σ)

Structural Op. Semantics (SOS = small step) for mini-while 2/2

$$
Val(b, \sigma) = tt
$$

(if *b* then S_1 else S_2, σ) \rightarrow (S_1, σ)

$$
Val(b, \sigma) = ff
$$

(if *b* then S_1 else S_2, σ) \rightarrow (S_2, σ)

(while b do S done, σ) \rightarrow

(if b then $(S; \text{while } b \text{ do } S \text{ done})$ else skip, σ)

We write $(c, \sigma) \rightarrow^* \sigma'$ if $(c, \sigma) \rightarrow^* (\textsf{skip}, \sigma').$

Exercises

Derive the small-step semantics of:

- $\bullet x := 2$; while $x > 0$ do $x := x 1$ done
- $x := 2$; while $x > 0$ do $x := x + 1$ done

How to prove determinism for the SOS semantics? What is the structure of the proof? do the proof

- 2 [Operational semantics for mini-while](#page-15-0)
- 3 [Comparing the different semantics](#page-30-0)

Comparison: divergence

A program is said to diverge if its execution does not terminate (slightly ambiguous in presence of non-determinism). A formal meaning of this statement is tied to the semantics we consider. In mini-while, a program diverges in state σ iff:

- NAT: the pair (S, σ) admits no derivation for any σ' .
- SOS: the pair (S, σ) admits an infinite sequence of derivations.

Note:

 \triangleright Assuming the existence of a derivation in NAT restricts the quantification to terminating programs.

 \triangleright What if the language can get stuck?

Comparison: equivalence of programs

A central purpose of semantics is program equivalence.

Two mini-while programs S_1, S_2 are semantically equivalent if:

- NAT: $\forall \sigma, \sigma', (S_1, \sigma) \Downarrow \sigma'$ iff $(S_2, \sigma) \Downarrow \sigma'$
- \bullet SOS: ∀σ:
	- $(S_1,\sigma) \to^* \sigma'$ iff $(S_2,\sigma) \to^* \sigma'$
	- \bullet (S_1, σ) diverges iff (S_2, σ) diverges

Are the two semantics equivalent?

$$
S_{NS}[S]\sigma = \begin{cases} \sigma' & \text{If } (S, \sigma) \Downarrow \sigma' \\ \text{under } f & \text{else} \end{cases}
$$

$$
S_{SOS}[S]\sigma = \begin{cases} \sigma' & \text{If } (S, \sigma) \rightarrow^* \sigma' \\ \text{under } f & \text{else} \end{cases}
$$

Theorem

$$
\mathcal{S}_{NS}=\mathcal{S}_{SOS}
$$

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [29](#page-33-0) / 37 \rightarrow

Equivalence of semantics 1/2

Proposition If $(S, \sigma) \Downarrow \sigma'$ then $(S, \sigma) \rightarrow^* \sigma'$.

Auxiliary lemma

If
$$
(S_1, \sigma) \to^k \sigma'
$$
 then $((S_1; S_2), \sigma) \to^k (S_2, \sigma')$

Proof: structural induction on the derivation tree for $(S, \sigma) \Downarrow$.

Equivalence of semantics 2/2

Proposition

If $(S, \sigma) \to^k \sigma'$ then $(S, \sigma) \Downarrow \sigma'$.

Auxiliary lemma

If $(S_1;S_2,\sigma) \rightarrow^k \sigma''$ then there exists σ',k_1 such that $(S_1,\sigma)\rightarrow^{k_1}\sigma'$ and $(S_2,\sigma')\rightarrow^{k-k_1}\sigma''$

Proof: induction on k**.**

Expressing parallelism

SOS can very naturally capture parallel execution as an interleaving.

For instance, for the parallel execution of two commands with no dynamic creation of threads:

$$
\frac{(S_1, \sigma) \to (S'_1, \sigma')}{((S_1||S_2), \sigma) \to (S'_1||S_2, \sigma')} \quad \frac{(S_2, \sigma) \to (S'_2, \sigma')}{((S_1||S_2), \sigma) \to (S_1||S'_2, \sigma')}
$$

We will come back to parallelism later in this course. Notice that expressing the same notion in NAT is not as straightforwards at all.

Correct compilation 1/3

What should we expect from a compiler? *It should preserves the meaning of programs.*

 $\mathcal{T} : \mathcal{L}_1 \to \mathcal{L}_2$

Correctness of T

 $\forall p \in \mathcal{L}_1, \; \|p\|_1 \equiv \|\mathcal{T}(p)\|_2$

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [33](#page-38-0) / 37 \rightarrow

Correct compilation 1/3

What should we expect from a compiler? *It should preserves the meaning of programs.*

 $\mathcal{T} : \mathcal{L}_1 \to \mathcal{L}_2$

Correctness of T

 $\forall p \in \mathcal{L}_1, \; \|p\|_1 \supseteq \llbracket \mathcal{T}(p) \rrbracket_2$

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation $(\#2)$: Semantics (CAP) ENSL Only 2024-2025 \leftarrow [33](#page-38-0) / 37 \rightarrow

Correct compilation 2/3

Terminating commands for Mini_while transformation

$\mathcal T$: Mini while \to Mini while

Correctness of T

$$
\forall c, \sigma, \sigma', \ (c, \sigma) \Downarrow \sigma' \rightarrow (\mathcal{T}(c), \sigma) \Downarrow \sigma'
$$

Note:

 \blacktriangleright Induction on the source derivation gives us a very strong proof principle

 \blacktriangleright \mathcal{T} (while true do skip) = skip is possible!

Correct compilation 3/3

But what of diverging commands?

For Mini_while, not very useful, but crucial when compiling a server, or a reactive program.

▶ We move to SOS and simulation diagrams. See on board.

Mini-while is not exactly mini-C

variable initialisation!

variable declarations

- Main problem is the scope of variables $(x \text{ may not refer to})$ the same variable depending on the point in the program)
- See course on typing
- Expression **evaluation**

Here we only had expressions without side-effects.

- **print-int and print-string** (operational semantics not so interesting, but introduces traces)
- Mini-C will have **functions**. We tackle them later on in this course.

Conclusion

Core ideas discussed today:

- Different flavors of semantics: focus on operational semantics
- Two sub-flavors: discussion on the difference between NAT and SOS
- Semantics as the basis to specify properties of programs and languages
- Reasoning by induction on the derivation, on the length of the reduction, by simulation diagrams

Next course: typing!

Additional exercise: make sure adding a construct such as **repeat** to the semantics is clear to you.