
Compilation and Program Analysis (#2):
Semantics

Yannick Zakowski

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

Intro

Contact me:
web: https://perso.ens-lyon.fr/yannick.zakowski/
email: yannick.zakowski@ens-lyon.fr

Credits: JC Filliâtre / JC Fernandez / Nielson-Nielson-Hankin /
Laure Gonnord / Ludovic Henrio

Note on organisation:
1: Course
2: exercises and proofs during the course ;
3: exercises and proofs done at the end the course if we
have the time

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 2 / 37 ↠

https://perso.ens-lyon.fr/yannick.zakowski/
yannick.zakowski@ens-lyon.fr

Semantics: On the Meaning of Programs

1 Semantics: On the Meaning of Programs

2 Operational semantics for mini-while

3 Comparing the different semantics

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 3 / 37 ↠

Semantics: On the Meaning of Programs

An old story
As the aim of a programming language is to describe
processes, I regard the definition of its semantics as
the design, the description of a machine that has as
reaction to an arbitrary process description in this lan-
guage the actual execution of this process. One could
also give the semantic definition of the language by
stating all the rules according to which one could ex-
ecute a process, given its description in the language.
Fundamentally, there is nothing against this, provided
that nothing is left to my imagination as regards the
way and the order in which these rules are to be ap-
plied. (...) In the design of a language this concept of
the “defining machine” should help us to ensure the un-
ambiguity of semantic interpretation of texts.
(Dijkstra, On the Design of Machine Independent Programming Languages,

1961)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 4 / 37 ↠

Semantics: On the Meaning of Programs

Book of the week

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 5 / 37 ↠

Semantics: On the Meaning of Programs

Different degrees of precision
Semi-formal specification in natural language

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 6 / 37 ↠

Semantics: On the Meaning of Programs

Different degrees of precision
Formal semantics

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 7 / 37 ↠

Semantics: On the Meaning of Programs

Different degrees of precision
Mechanized formal semantics in a proof assistant

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 8 / 37 ↠

Semantics: On the Meaning of Programs

Different kinds of semantics
Let us first define an abstract syntax for our language, via what
is usually referred as Backus–Naur form (BNF).
Example : arithmetic expressions, x ∈ V a set of variables

e ::= x | n | e+ e | e ∗ e | . . .

This is just another view of the AST obtained after parsing.

This abstract syntax typically forms the basis to define the
semantics.

Semantics comes in different shapes:

axiomatic
denotational
by translation
operational semantics (natural, structural)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 9 / 37 ↠

Semantics: On the Meaning of Programs

Different kinds of semantics
Let us first define an abstract syntax for our language, via what
is usually referred as Backus–Naur form (BNF).
Example : arithmetic expressions, x ∈ V a set of variables

e ::= x | n | e+ e | e ∗ e | . . .

This is just another view of the AST obtained after parsing.
This abstract syntax typically forms the basis to define the
semantics.

Semantics comes in different shapes:

axiomatic
denotational
by translation
operational semantics (natural, structural)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 9 / 37 ↠

Semantics: On the Meaning of Programs

Axiomatic Semantics (ex: Floyd-Hoare logic)
(An axiomatic basis for computer programming, Hoare, 1969)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 10 / 37 ↠

Semantics: On the Meaning of Programs

Axiomatic Semantics (ex: Floyd-Hoare logic)
(An axiomatic basis for computer programming, Hoare, 1969)

Hoare triples states invariants of the global state:

{P} i {Q}

“if P is true before the instruction i, then Q is true afterwards”

Example of a valid triple:

{x ≥ 0} x := x+ 1 {x > 0}

Proved by application of the rule for assignment:

{P [x← E]} x := E {P (x)}

▶ A semantics of specifications.
▶ See also: separation logic

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 10 / 37 ↠

Semantics: On the Meaning of Programs

Denotational Semantics
Associates to an expression e its mathematical meaning [[e]] in
a semantic domain D.

Example : arithmetic expressions.

e ::= x | n | e+ e | e ∗ e | . . .

For such a simple language, a simple domain does the job:
D = env→ N.

[[x]] ρ = ρ(x)

[[n]] ρ = N (n)

[[e1 + e2]] ρ = [[e1]] ρ+[[e2]] ρ

[[e1 ∗ e2]] ρ = [[e1]] ρ×[[e2]] ρ

Beyond arithmetic expressions, things get more involved: in
what domain should we interpret the lambda calculus?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 11 / 37 ↠

Semantics: On the Meaning of Programs

Semantics by translation

(Definitional interpreters for higher-order programming
languages, Reynolds, 1972)

We can define the semantics of a language by translation into a
language whose semantics is already known.

[[x = v + v′]] = y = get v;
z = get v′;
x = y + z

▶ Inherit for free the meta-theory from the host language.
▶ Not always very illuminating: to the extreme, R’s language is
defined by the result of its compiler...

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 12 / 37 ↠

Semantics: On the Meaning of Programs

Operational Semantics
We describe a process of evaluation for the computations. The
approach is more syntactic: it operates directly on the abstract
syntax.

“natural” or “big-steps semantics”, evaluates the program
in one step (a derivation tree)

e ⇓ v

“by reduction” or “small-steps semantics”: a relation
describes an atomic reduction, and the semantics consider
the transitive reflexive closure of this relation.

e→ e1 → e2 → · · · → v

Note: although operational by nature, does not need be
executable.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 13 / 37 ↠

Operational semantics for mini-while

1 Semantics: On the Meaning of Programs

2 Operational semantics for mini-while

3 Comparing the different semantics

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 14 / 37 ↠

Operational semantics for mini-while

mini-while

e ∈ A ::= x | n | e+ e | e ∗ e | . . .

(abstract) grammar:

S(Smt) ::= x := e assign
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 15 / 37 ↠

Operational semantics for mini-while

Semantics of expressions

We consider a very simple memory model: a store
σ ∈ State = V ar → Z.
Access is written σ(x), and update σ[y 7→ n].

Semantics of arithmetic expressions – Val: A → State→ Z: On
board

V al(n, σ) = N (n)

V al(x, σ) =

V al(e+ e′, σ) =

V al(e× e′, σ) =

Note: Denotational or natural semantics?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 16 / 37 ↠

Operational semantics for mini-while

Semantics of boolean expressions

V al : B → State→ Z Exercise at the end of course
(b ::= tt | ff | x | b ∧ b |... | e < e | ...)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 17 / 37 ↠

Operational semantics for mini-while

Warm up: first properties
Semantics of arithmetic expressions

Show the two following properties (first one at the end of the
course):

1 For any e ∈ A, and σ, σ′ two states. Show that if
(∀x ∈ V ars(e), σ(x) = σ′(x)), then V al(e, σ) = V al(e, σ′).
Exercise at the end of course

2 Let e, e′ ∈ A, show that:

V al(e[e′/x], σ) = V al(e, σ[x 7→ V al(e′, σ)])

now

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 18 / 37 ↠

Operational semantics for mini-while

Natural semantics (big step) for mini-while 1/2

In one step from the source program to the final result.
⇓: Stm× State→ State

(x := e, σ) ⇓ σ[x 7→ V al(e, σ)]

(skip, σ) ⇓ σ

(S1, σ) ⇓ σ′ (S2, σ
′) ⇓ σ′′(

(S1;S2), σ
)
⇓ σ′′

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 19 / 37 ↠

Operational semantics for mini-while

Natural semantics (big step) for mini-while 2/2

V al(b, σ) = tt (S1, σ) ⇓ σ′

(if b then S1 else S2, σ) ⇓ σ′

V al(b, σ) = ff (S2, σ) ⇓ σ′

(if b then S1 else S2, σ) ⇓ σ′

V al(b, σ) = tt ?

(while b do S done, σ) ⇓?

V al(b, σ) = ff

(while b do S done, σ) ⇓?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 20 / 37 ↠

Operational semantics for mini-while

Natural semantics (big step) for mini-while 2/2

V al(b, σ) = tt (S1, σ) ⇓ σ′

(if b then S1 else S2, σ) ⇓ σ′

V al(b, σ) = ff (S2, σ) ⇓ σ′

(if b then S1 else S2, σ) ⇓ σ′

V al(b, σ) = tt (S, σ) ⇓ σ′ (while b do S done, σ′) ⇓ σ′′

(while b do S done, σ) ⇓ σ′′

V al(b, σ) = ff

(while b do S done, σ) ⇓ σ

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 20 / 37 ↠

Operational semantics for mini-while

Example

Derive the semantics (leaves are axioms, nodes are rules)
of:

x := 2; while x > 0 do x := x− 1 done

x := 2; while x > 0 do x := x+ 1 done

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 21 / 37 ↠

Operational semantics for mini-while

Using the semantics to prove properties

Example: determinism
In mini-while there is a single way to evaluate a program.

Theorem: Determinism
For all S, for all σ, σ′, σ′′ :
If (S, σ) ⇓ σ′ and (S, σ) ⇓ σ′′ then σ′ = σ′′.

What should we induct on? do the proof

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 22 / 37 ↠

Operational semantics for mini-while

Structural Op. Semantics (SOS = small step) for
mini-while 1/2

(A Structural Approach to Operational Semantics, Plotkin, late
70th)
We perform atomic reduction steps.
→: Stm× State→ Stm× State

(x := e, σ)→ σ[x 7→ V al(e, σ)]

(skip, σ) ̸→

(
(skip;S2), σ

)
→ (S2, σ)

(S1, σ)→ (S′
1, σ

′)(
(S1;S2), σ

)
→ (S′

1;S2, σ′)

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 23 / 37 ↠

Operational semantics for mini-while

Structural Op. Semantics (SOS = small step) for
mini-while 2/2

V al(b, σ) = tt

(if b then S1 else S2, σ)→ (S1, σ)

V al(b, σ) = ff

(if b then S1 else S2, σ)→ (S2, σ)

(while b do S done, σ)→

(if b then (S; while b do S done) else skip, σ)

We write (c, σ)→∗ σ′ if (c, σ)→∗ (skip, σ′).

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 24 / 37 ↠

Operational semantics for mini-while

Structural Op. Semantics (SOS = small step) for
mini-while 2/2

V al(b, σ) = tt

(if b then S1 else S2, σ)→ (S1, σ)

V al(b, σ) = ff

(if b then S1 else S2, σ)→ (S2, σ)

(while b do S done, σ)→

(if b then (S; while b do S done) else skip, σ)

We write (c, σ)→∗ σ′ if (c, σ)→∗ (skip, σ′).

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 24 / 37 ↠

Operational semantics for mini-while

Structural Op. Semantics (SOS = small step) for
mini-while 2/2

V al(b, σ) = tt

(if b then S1 else S2, σ)→ (S1, σ)

V al(b, σ) = ff

(if b then S1 else S2, σ)→ (S2, σ)

(while b do S done, σ)→

(if b then (S; while b do S done) else skip, σ)

We write (c, σ)→∗ σ′ if (c, σ)→∗ (skip, σ′).

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 24 / 37 ↠

Operational semantics for mini-while

Exercises

Derive the small-step semantics of:

x := 2; while x > 0 do x := x− 1 done

x := 2; while x > 0 do x := x+ 1 done

How to prove determinism for the SOS semantics? What is
the structure of the proof? do the proof

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 25 / 37 ↠

Comparing the different semantics

1 Semantics: On the Meaning of Programs

2 Operational semantics for mini-while

3 Comparing the different semantics

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 26 / 37 ↠

Comparing the different semantics

Comparison: divergence

A program is said to diverge if its execution does not terminate
(slightly ambiguous in presence of non-determinism). A formal
meaning of this statement is tied to the semantics we consider.
In mini-while, a program diverges in state σ iff:

NAT: the pair (S, σ) admits no derivation for any σ′.

SOS: the pair (S, σ) admits an infinite sequence of
derivations.

Note:
▶ Assuming the existence of a derivation in NAT restricts the
quantification to terminating programs.
▶ What if the language can get stuck?

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 27 / 37 ↠

Comparing the different semantics

Comparison: equivalence of programs

A central purpose of semantics is program equivalence.

Two mini-while programs S1, S2 are semantically equivalent if:

NAT: ∀σ, σ′, (S1, σ) ⇓ σ′ iff (S2, σ) ⇓ σ′

SOS: ∀σ:
(S1, σ)→∗ σ′ iff (S2, σ)→∗ σ′

(S1, σ) diverges iff (S2, σ) diverges

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 28 / 37 ↠

Comparing the different semantics

Are the two semantics equivalent?

SNS [S]σ =

σ′ If (S, σ) ⇓ σ′

undef else

SSOS [S]σ =

σ′ If (S, σ)→∗ σ′

undef else

Theorem

SNS = SSOS

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 29 / 37 ↠

Comparing the different semantics

Equivalence of semantics 1/2

Proposition
If (S, σ) ⇓ σ′ then (S, σ)→∗ σ′.

Auxiliary lemma
If (S1, σ)→k σ′ then ((S1;S2), σ)→k (S2, σ

′)

Proof: structural induction on the derivation tree for
(S, σ) ⇓.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 30 / 37 ↠

Comparing the different semantics

Equivalence of semantics 2/2

Proposition
If (S, σ)→k σ′ then (S, σ) ⇓ σ′.

Auxiliary lemma
If (S1;S2, σ)→k σ′′ then there exists σ′, k1 such that
(S1, σ)→k1 σ′ and (S2, σ

′)→k−k1 σ′′

Proof: induction on k.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 31 / 37 ↠

Comparing the different semantics

Expressing parallelism

SOS can very naturally capture parallel execution as an
interleaving.
For instance, for the parallel execution of two commands with
no dynamic creation of threads:

(S1, σ)→ (S′
1, σ

′)(
(S1||S2), σ

)
→ (S′

1||S2, σ′)

(S2, σ)→ (S′
2, σ

′)(
(S1||S2), σ

)
→ (S1||S′

2, σ
′)

We will come back to parallelism later in this course.
Notice that expressing the same notion in NAT is not as
straightforwards at all.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 32 / 37 ↠

Comparing the different semantics

Correct compilation 1/3

What should we expect from a compiler?
It should preserves the meaning of programs.

T : L1 → L2

Correctness of T

∀p ∈ L1, JpK1 ≡ JT (p)K2

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 33 / 37 ↠

Comparing the different semantics

Correct compilation 1/3

What should we expect from a compiler?
It should preserves the meaning of programs.

T : L1 → L2

Correctness of T

∀p ∈ L1, JpK1 ⊇ JT (p)K2

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 33 / 37 ↠

Comparing the different semantics

Correct compilation 2/3
Terminating commands for Mini_while transformation

T : Mini_while→ Mini_while

Correctness of T

∀c, σ, σ′, (c, σ) ⇓ σ′ → (T (c), σ) ⇓ σ′

Note:
▶ Induction on the source derivation gives us a very strong
proof principle
▶ T (while true do skip) = skip is possible!

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 34 / 37 ↠

Comparing the different semantics

Correct compilation 3/3
But what of diverging commands?

For Mini_while, not very useful, but crucial when compiling a
server, or a reactive program.
▶ We move to SOS and simulation diagrams. See on board.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 35 / 37 ↠

Comparing the different semantics

Mini-while is not exactly mini-C

variable initialisation!

variable declarations
Main problem is the scope of variables (x may not refer to
the same variable depending on the point in the program)
See course on typing

Expression evaluation
Here we only had expressions without side-effects.

print-int and print-string (operational semantics not so
interesting, but introduces traces)

Mini-C will have functions. We tackle them later on in this
course.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 36 / 37 ↠

Comparing the different semantics

Conclusion
Core ideas discussed today:

Different flavors of semantics: focus on operational
semantics

Two sub-flavors: discussion on the difference between NAT
and SOS

Semantics as the basis to specify properties of programs
and languages

Reasoning by induction on the derivation, on the length of
the reduction, by simulation diagrams

Next course: typing!

Additional exercise: make sure adding a construct such as
repeat to the semantics is clear to you.

Yannick Zakowski (M1 - Lyon1 & ENSL) Compilation (#2): Semantics (CAP) ENSL Only 2024-2025 ↞ 37 / 37 ↠

	Semantics: On the Meaning of Programs
	Operational semantics for mini-while
	Comparing the different semantics

