
Compilation and Program Analysis (#13) : Beyond
ahead-of-time imperative compilation

Gabriel Radanne

Master 1, ENS de Lyon et Dpt Info, Lyon1

November 6, 2024

Compilation in this course:

Start from an imperative core language

Compile statically to a binary executable

Classical intermediate representations and algorithms

⇒ But language design didn’t stop at C!

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 2 / 151

Compilation in this course:

Start from an imperative core language

Compile statically to a binary executable

Classical intermediate representations and algorithms

⇒ But language design didn’t stop at C!

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 2 / 151

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 3 / 151

What strategy should we use to approach:

parallel and concurrent features (in C/C++, Java, . . .)

dynamic languages (Javascript, Ruby, Python, Scheme, . . .)

hostile languages (PHP, Perl, R, Javascript, Ruby, . . .)

objects (Java, Javascript, C++, C#, . . .)

Data manipulation (SQL, GraphQL, Python for datascience, . . .)

weird features (OCaml, R, Haskell, Rust)

Enough to fill many courses!

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 4 / 151

SSA, Functional Programming in disguise?

1 SSA, Functional Programming in disguise?

2 Pattern Matching Compilation

3 Just in Time

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 5 / 151

Sources of inspiration used
for these slides

The SSA book (Chapter 6 by Lennart Beringer)

SSA is functional programming (Andrew Appel — 1998)

A Correspondence between Continuation Passing Style (Richard Kelsey — 1995)

SSA, Functional Programming in disguise?

6 / 151

Looking through the SSA glass
x <- add y z
…
a <- lt x y

Consider a simple couple of instructions:

In normal CFG:

In SSA form:

SSA, Functional Programming in disguise?

7 / 151

Looking through the SSA glass
x <- add y z
…
a <- lt x y

Consider a simple couple of instructions:

• the variable x being assigned to is carefully distinguished from the expression to the right

• names are globally unique. So assignments and def-sites of variables are in bijection

In normal CFG:

In SSA form:

SSA, Functional Programming in disguise?

8 / 151

Looking through the SSA glass
x <- add y z
…
a <- lt x y

Consider a simple couple of instructions:

• the variable x being assigned to is carefully distinguished from the expression to the right
• instructions are computations to be processed:

the meaning of their evaluation can be compromised at any time

• names are globally unique. So assignments and def-sites of variables are in bijection
• the instruction itself can be thought of as a static value

In normal CFG:

In SSA form:

SSA, Functional Programming in disguise?

9 / 151

Looking through the SSA glass
x <- add y z
…
a <- lt x y

Consider a simple couple of instructions:

• the variable x being assigned to is carefully distinguished from the expression to the right
• instructions are computations to be processed:

the meaning of their evaluation can be compromised at any time
• use sites can map to various def-sites

lt x y

x y

• names are globally unique. So assignments and def-sites of variables are in bijection
• the instruction itself can be thought of as a static value
• use sites can be thought of as data flow graph edges

In normal CFG:

In SSA form:

SSA, Functional Programming in disguise?

10 / 151

Looking through the SSA glass
x <- add y z
…
a <- lt x y

Consider a simple couple of instructions:

• the variable x being assigned to is carefully distinguished from the expression to the right
• instructions are computations to be processed:

the meaning of their evaluation can be compromised at any time
• use sites can map to various def-sites

lt x y

x y

• names are globally unique. So assignments and def-sites of variables are in bijection
• the instruction itself can be thought of as a static value
• use sites can be thought of as data flow graph edges

In normal CFG:

In SSA form:

SSA, Functional Programming in disguise?

11 / 151

Looking through the SSA glass
x <- add y z
…
a <- lt x y

Consider a simple couple of instructions:

• the variable x being assigned to is carefully distinguished from the expression to the right
• instructions are computations to be processed:

the meaning of their evaluation can be compromised at any time
• use sites can map to various def-sites

lt x y

x y

• names are globally unique. So assignments and def-sites of variables are in bijection
• the instruction itself can be thought of as a static value
• use sites can be thought of as data flow graph edges

Uses of variables can be represented as simple pointers to their defining instructions
(and LLVM do so to represent programs in memory!)

In normal CFG:

In SSA form:

_

_

SSA, Functional Programming in disguise?

12 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let x = e1 in e2

SSA, Functional Programming in disguise?

13 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let x = e1 in e2

e2 is the static scope
 of variable x

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

SSA, Functional Programming in disguise?

14 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let v = 3 in

 let y = (let v = 2 * v in 4 * v)
 in y * v + z

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

SSA, Functional Programming in disguise?

15 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let v = 3 in

 let y = (let v = 2 * v in 4 * v)
 in y * v + z

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

SSA, Functional Programming in disguise?

16 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let v = 3 in

 let y = (let v = 2 * v in 4 * v)
 in y * v + z

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

SSA, Functional Programming in disguise?

17 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let v = 3 in

 let y = (let v = 2 * v in 4 * v)
 in y * v + z

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

SSA, Functional Programming in disguise?

18 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let v = 3 in

 let y = (let v = 2 * v in 4 * v)
 in y * v + z

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

SSA, Functional Programming in disguise?

19 / 151

Binding in the functional world

The idea and application of the SSA form stems from the imperative world.
But in the mean time, the functional world has been doing their own compilation!

fun f(x,y) = e

The job is of course seemingly quite distinct. We are now fundamentally playing with:
• (Mutually recursive) functions
• let-binding constructs let v = 3 in

 let y = (let v = 2 * v in 4 * v)
 in y * v + z

And when it comes to the central purpose of all this story, variables, we rely on a powerful idea:
static scopes!

Unicity of names is unnecessary, but can be enforced by alpha renaming

SSA, Functional Programming in disguise?

20 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

SSA, Functional Programming in disguise?

21 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

SSA, Functional Programming in disguise?

22 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

Nearest enclosing binding

SSA, Functional Programming in disguise?

23 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

Nearest enclosing binding

SSA, Functional Programming in disguise?

24 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

Well scoped: the only fresh variables are formal arguments

SSA, Functional Programming in disguise?

25 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

Well scoped: the only fresh variables are formal arguments

fun f(z) =

SSA, Functional Programming in disguise?

26 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

Well scoped: the only fresh variables are formal arguments

fun f(z) =

Each use of a variable is dominated by its unique definition!

SSA, Functional Programming in disguise?

27 / 151

Binding in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in y * v + z

Binding shadows: enforces that each use-site maps to a unique def-site

Well scoped: the only fresh variables are formal arguments

fun f(z) =

Each use of a variable is dominated by its unique definition!

Uniqueness by scope and not by name: referential transparency!

Referential transparency: compositional equational reasoning!

SSA, Functional Programming in disguise?

28 / 151

Control flow in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in k(y * v + z)

CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

SSA, Functional Programming in disguise?

29 / 151

Control flow in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in k(y * v + z)

CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

let k = x . 2 * x inλ

SSA, Functional Programming in disguise?

30 / 151

Control flow in the functional world

let v = 3 in
 let y = (let v = 2 * v in 4 * v)
 in k(y * v + z)

CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(k) =

in let k = x . 2 * x in f(k)λ

SSA, Functional Programming in disguise?

31 / 151

Control flow in the functional world

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

SSA, Functional Programming in disguise?

32 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

SSA, Functional Programming in disguise?

33 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

parameterized by a continuation

SSA, Functional Programming in disguise?

34 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

parameterized by a continuation

Craft a new local one

SSA, Functional Programming in disguise?

35 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

parameterized by a continuation

Craft a new local one Share its use between two branches

SSA, Functional Programming in disguise?

36 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

parameterized by a continuation

Craft a new local one Share its use between two branches

x <- 4
if y > 0

z <- y * 2 z <- 3

return z * x

y

SSA, Functional Programming in disguise?

37 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

x <- 4
if y > 0

z1 <- y * 2 z2 <- 3

z <- (z1,z2)
return z * x

Φ

y

SSA, Functional Programming in disguise?

38 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z1 = y * 2 in k’(z1)
 else let z2 = 3 in k’(z2)

λ

x <- 4
if y > 0

z1 <- y * 2 z2 <- 3

z <- (z1,z2)
return z * x

Φ

y

continuation <-> phi-node
calls to the continuation <-> arguments to the phi-node

scope of a let-bind <-> dominance region of an assignment

SSA, Functional Programming in disguise?

39 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z1 = y * 2 in k’(z1)
 else let z2 = 3 in k’(z2)

λ

x <- 4
if y > 0

z1 <- y * 2 z2 <- 3

z <- (z1,z2)
return z * x

Φ

y

z <- (z1,z2)Φ

continuation <-> phi-node
calls to the continuation <-> arguments to the phi-node

scope of a let-bind <-> dominance region of an assignment

SSA, Functional Programming in disguise?

40 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z1 = y * 2 in k’(z1)
 else let z2 = 3 in k’(z2)

λ

x <- 4
if y > 0

z1 <- y * 2 z2 <- 3

z <- (z1,z2)
return z * x

Φ

y

z <- (z1,z2)Φ

continuation <-> phi-node
calls to the continuation <-> arguments to the phi-node

scope of a let-bind <-> dominance region of an assignment

SSA, Functional Programming in disguise?

41 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z1 = y * 2 in k’(z1)
 else let z2 = 3 in k’(z2)

λ

x <- 4
if y > 0

z1 <- y * 2 z2 <- 3

z <- (z1,z2)
return z * x

Φ

y

z <- (z1,z2)Φ

continuation <-> phi-node
calls to the continuation <-> arguments to the phi-node

scope of a let-bind <-> dominance region of an assignment

SSA, Functional Programming in disguise?

42 / 151

Control flow in the functional world
CPS style: where an imperative compiler would carry on a return address,
 the functional one calls a continuation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z1 = y * 2 in k’(z1)
 else let z2 = 3 in k’(z2)

λ

x <- 4
if y > 0

z1 <- y * 2 z2 <- 3

z <- (z1,z2)
return z * x

Φ

y

z <- (z1,z2)Φ

continuation <-> phi-node
calls to the continuation <-> arguments to the phi-node

scope of a let-bind <-> dominance region of an assignment

SSA, Functional Programming in disguise?

43 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

We are going to turn the CFG above in functional style, but via its functional representation

SSA, Functional Programming in disguise?

44 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

We are going to turn the CFG above in functional style, but via its functional representation

fun f(y,k) =
 let x = 4 in
 let k’ = z. k(z*x)
 if y > 0
 then let z = y * 2 in k’(z)
 else let z = 3 in k’(z)

λ

fun f(y) =
 let x = 4 in
 fun g(z) = z*x
 if y > 0
 then fun h1() = let z = y * 2 in g(z)
 in h1()
 else fun h2() = let z = 3 in g(z)
 in h2()

CPS-style (let-normal) direct-style (i.e. with tail recursive calls)

SSA, Functional Programming in disguise?

45 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

We are going to turn the CFG above in functional style, but via its functional representation

SSA, Functional Programming in disguise?

46 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

We are going to turn the CFG above in functional style, but via its functional representation

Liveness analysis + one mutually recursive function per block

SSA, Functional Programming in disguise?

47 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

fun f1() = let v = 1, z = 8, y = 4
 in f2(v,z,y)

We are going to turn the CFG above in functional style, but via its functional representation

Liveness analysis + one mutually recursive function per block

SSA, Functional Programming in disguise?

48 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

fun f1() = let v = 1, z = 8, y = 4
 in f2(v,z,y)
fun f2(v,z,y) = let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then f3(y,v)
 else f2(v,z,y)

We are going to turn the CFG above in functional style, but via its functional representation

Liveness analysis + one mutually recursive function per block

SSA, Functional Programming in disguise?

49 / 151

SSA: functional construction
w <- v + y
return w

1 2 3

v <- 1
z <- 8
y <- 4

x <- 5 + y
y <- x * z
x <- x - 1
if x = 0

false

true

fun f1() = let v = 1, z = 8, y = 4
 in f2(v,z,y)
fun f2(v,z,y) = let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then f3(y,v)
 else f2(v,z,y)
fun f3(y,v) = let w = v + y
 in w

We are going to turn the CFG above in functional style, but via its functional representation

Liveness analysis + one mutually recursive function per block

SSA, Functional Programming in disguise?

50 / 151

SSA: functional construction

• All functions declarations are closed
• Unique definition-site per use is satisfied
• In a let binding let x = e1 in e2, the subterm e2 corresponds to

the successor in the control flow of the assignment to x

fun f1() = let v = 1, z = 8, y = 4
 in f2(v,z,y)
fun f2(v,z,y) = let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then f3(y,v)
 else f2(v,z,y)
fun f3(y,v) = let w = v + y
 in w

SSA, Functional Programming in disguise?

51 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

• All functions declarations are closed
• Unique definition-site per use is satisfied
• In a let binding let x = e1 in e2, the subterm e2 corresponds to

the successor in the control flow of the assignment to x

SSA, Functional Programming in disguise?

52 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

y4 <- (y3)
v3 <- (v2)
w1 <- v4 + y3
return w1

Φ
Φ

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

v2 <- (v1,v2)
z2 <- (z1,z2)
y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z2
x2 <- x1 - 1
if x2 = 0

Φ
Φ
Φ

false

true

SSA, Functional Programming in disguise?

53 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

y4 <- (y3)
v3 <- (v2)
w1 <- v4 + y3
return w1

Φ
Φ

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

v2 <- (v1,v2)
z2 <- (z1,z2)
y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z2
x2 <- x1 - 1
if x2 = 0

Φ
Φ
Φ

false

true

no phi-node

SSA, Functional Programming in disguise?

54 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

y4 <- (y3)
v3 <- (v2)
w1 <- v4 + y3
return w1

Φ
Φ

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

v2 <- (v1,v2)
z2 <- (z1,z2)
y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z2
x2 <- x1 - 1
if x2 = 0

Φ
Φ
Φ

false

true

no phi-node

SSA, Functional Programming in disguise?

55 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

y4 <- (y3)
v3 <- (v2)
w1 <- v4 + y3
return w1

Φ
Φ

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

v2 <- (v1,v2)
z2 <- (z1,z2)
y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z2
x2 <- x1 - 1
if x2 = 0

Φ
Φ
Φ

false

true

no phi-node

SSA, Functional Programming in disguise?

56 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

y4 <- (y3)
v3 <- (v2)
w1 <- v4 + y3
return w1

Φ
Φ

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

v2 <- (v1,v2)
z2 <- (z1,z2)
y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z2
x2 <- x1 - 1
if x2 = 0

Φ
Φ
Φ

false

true

no phi-node

SSA, Functional Programming in disguise?

57 / 151

SSA: functional construction

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

y4 <- (y3)
v3 <- (v2)
w1 <- v4 + y3
return w1

Φ
Φ

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

v2 <- (v1,v2)
z2 <- (z1,z2)
y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z2
x2 <- x1 - 1
if x2 = 0

Φ
Φ
Φ

false

true

no phi-node
phi-nodes for all live variable:

pruned, non-minimal SSA

SSA, Functional Programming in disguise?

58 / 151

Block sinking
fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

SSA, Functional Programming in disguise?

59 / 151

Block sinking

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3(y,v) = let w = y + v in w
 in f3(y,v)
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

SSA, Functional Programming in disguise?

60 / 151

Block sinking

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3(y,v) = let w = y + v in w
 in f3(y,v)
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

SSA, Functional Programming in disguise?

61 / 151

Block sinking

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3(y,v) = let w = y + v in w
 in f3(y,v)
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

fun f1() = let v1 = 1, z1 = 8, y1 = 4
 in f2(v1,z1,y1)
fun f2(v2,z2,y2) = let x1 = 5 + y2, y3 = x1 * z2, x2 = x1 - 1
 in if x2 = 0
 then f3(y3,v2)
 else f2(v2,z2,y3)
fun f3(y4,v3) = let w1 = v4 + y3
 in w1

Essentially: based on the DT
of the call graph

The dominance relationship
becomes apparent in the scoping

SSA, Functional Programming in disguise?

62 / 151

Parameter dropping

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3(y,v) = let w = y + v in w
 in f3(y,v)
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

We drop the formal parameters that can be statically ruled out as semantically irrelevant

SSA, Functional Programming in disguise?

63 / 151

Parameter dropping

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3(y,v) = let w = y + v in w
 in f3(y,v)
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

We drop the formal parameters that can be statically ruled out as semantically irrelevant

SSA, Functional Programming in disguise?

64 / 151

Parameter dropping

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3() = let w = y + v in w
 in f3()
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

We drop the formal parameters that can be statically ruled out as semantically irrelevant

SSA, Functional Programming in disguise?

65 / 151

Parameter dropping

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(v,z,y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3() = let w = y + v in w
 in f3()
 else f2(v,z,y)
 in f2(v,z,y)
in f1()

We drop the formal parameters that can be statically ruled out as semantically irrelevant

SSA, Functional Programming in disguise?

66 / 151

Parameter dropping

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3() = let w = y + v in w
 in f3()
 else f2(y)
 in f2(y)
in f1()

We drop the formal parameters that can be statically ruled out as semantically irrelevant

SSA, Functional Programming in disguise?

67 / 151

Minimal SSA form

fun f1() =
 let v = 1, z = 8, y = 4
 in fun f2(y) =
 let x = 5 + y, y = x * z, x = x - 1
 in if x = 0
 then fun f3() = let w = y + v in w
 in f3()
 else f2(y)
 in f2(y)
in f1()

w1 <- v1 + y3
return w1

1 2 3

v1 <- 1
z1 <- 8
y1 <- 4

y2 <- (y1,y3)
x1 <- 5 + y2
y3 <- x1 * z1
x2 <- x1 - 1
if x2 = 0

Φ

false

true

SSA, Functional Programming in disguise?

68 / 151

SSA, Functional Programming in disguise?

Summary – SSA and CPS

The Church-Turing Hypothesis of IR !

Single Static Assignment: quintessentially imperative
Good at intra-procedural (constant propagation, dead code, allocation, . . .)

Continuation Passing Style: quintessentially functional
Good at inter-procedural (inlining!)

They are equivalent!
Highlight the importance of information sharing.
⇒ Compilers can use either for optimisations, and go from one to the other.

69 / 151

Pattern Matching Compilation

1 SSA, Functional Programming in disguise?

2 Pattern Matching Compilation

3 Just in Time

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 70 / 151

Pattern Matching Compilation

Introduction: Algebraic Data Types
Product types (a.k.a. records, tuples, structs)

type point = { x: int, y: int }

let distance p1 p2 =

let dx = p2.x -p1.x in

let dy = p2.y -p1.y in

sqrt(dx * dx + dy * dy)

Sum types (a.k.a. enums, tagged unions)
type Card = King | Queen | Jack | @Numeral of int@

let value c = match c with

| King -> 13

| Queen -> 12

| Jack -> 11

| Numeral(n) -> n

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 71 / 151

Pattern Matching Compilation

Introduction: Algebraic Data Types
Example of red-black trees

type color = Red | Black

type rbt =

| Empty

| Node of Color * int * RBT * RBT

let cardinal (t: RBT) : int = match t with

| Empty -> 0

| Node(_, _, t1, t2) -> 1 + cardinal(t1) + cardinal(t2)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 72 / 151

Pattern Matching Compilation

Introduction: Algebraic Data Types
Example of red-black trees

type color = Red | Black

type rbt =

| Empty

| Node of Color * int * RBT * RBT

Type safety, exhaustivity and
non-redundancy checks

Complex nested patterns are
expressive yet concise

Rebalancing operation:

match c, v, t1, t2 {

| Black, z, Node(Red, y, Node(Red, x, a, b), c), d

| Black, z, Node(Red, x, a, Node(Red, y, b, c)), d

| Black, x, a, Node(Red, z, Node(Red, y, b, c), d)

| Black, x, a, Node(Red, y, b, Node(Red, z, c, d))

-> Node(Red, y, Node(Black, x, a, b), Node(Black, z, c, d))

| a, b, c, d -> Node (a, b, c, d)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 72 / 151

Pattern Matching Compilation

How to execute this?

How to compile this?

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 73 / 151

Pattern Matching Compilation

Let’s try in practice

Try to compile this code to if-tests:

let f x y z = match x,y,z with

| _, false, true -> 1

| false, true, _ -> 2

| _, _, false -> 3

| _, _, true -> 4

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 74 / 151

Pattern Matching Compilation

A more complex example

τ0 = None + Some(A+B + C(u32))

match v with

| (None | Some(A)) -> 0

| Some(B) -> 1

| Some(C(n)) -> 2 + n

Let’s try it.

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 75 / 151

Pattern Matching Compilation

OCaml representation-specific pattern matching

Input
match v with

| (None | Some(A)) -> 0

| Some(B) -> 1

| Some(C(n)) -> 2 + n

Output decision tree (as graph)

0

1
*Δ[1,64]

1

3

n = *(*Δ[1,64])[1,64] n

! ((*Δ[1,64]) & 1)
0

1

! (Δ & 1)
0

1

Output decision tree (as C code)
switch(v & 1) {

case 0: // Some (pointer to ...)

switch((*v)[1] & 1) {

case 0: // C

uint32_t n = (*((*v)[1]))[1] >> 1;

return 2 + n;

case 1: // unit variant (A or B)

switch((*v)[1]) {

case 0b01: // A

return 0;

case 0b11: // B

return 1;}}

case 1: // None: last bit is 1 (non ptr)

return 0;}

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 76 / 151

Pattern Matching Compilation

An Intermediate Representation!

We have a pattern matching problem

We want a decision tree

⇒We need an appropriate intermediate representation!

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 77 / 151

Pattern Matching Compilation

The pattern Matrix

Let’s try to represent a matching problem in its globality

match v with

| (None | Some(A)) -> 0

| Some(B) -> 1

| Some(C(n)) -> 2 + n

⇒


.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


match x,y,z with

| _, false, true -> 1

| false, true, _ -> 2

| _, _, false -> 3

| _, _, true -> 4

⇒


.0 .1 .2

False True ∅, 1
False True ∅, 2

False ∅, 3
True ∅, 4


In the pattern matrix, columns represent “positions” in the input, and lines are
patterns and outputs

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 78 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

Initial pattern matrix
matches the main
discriminant against
toplevel patterns

Each case yields its
index and an empty
binding
environment

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

Split or-patterns

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

Retrieve the head
constructor of the
current subterm,
then branch to its
associated subtree

One branch per
constructor

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

First case accepts any
input

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

Discard
head-constructor-
incompatible cases

Focus remaining
cases on the child
subterm

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

Inspect the current
subterm

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation scheme
.

None | Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2




.

None ∅, 0
Some(A) ∅, 0
Some(B) ∅, 1

Some(C(n)) ∅, 2


or

Switch(.)(· · ·)switch

(
∅, 0

)

N
one

success(0, ∅)
wildcard


.Some

A ∅, 0
B ∅, 1

C(n) ∅, 2



Some

Switch(.Some)(· · ·)
switch

(
∅, 0

)
A

success(0, ∅)
wildcard

(
∅, 1

)B

success(1, ∅)
wildcard

(
.Some.C

n ∅, 2

)
C

(
.Some.C)

{n 7→ .Some.C))} , 2

)variable

success(2, {n 7→ .Some.C})
wildcard

Bind variable
pattern to the
current subterm

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 79 / 151

Pattern Matching Compilation

Compilation algorithm – Fail and Success

COMPILE (∅) = unreachable (No pattern case)

COMPILE


h1 . . . hn

. . . j1, s1

...
. . .

...
...

pm1 . . . pmn jm, sm

 = success(j1, s1) (Wildcard case)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 80 / 151

Pattern Matching Compilation

Compilation algorithm – Variables

COMPILE



h1 hi hn

p11 p1i p1n j1, s1

...
...

...
...

pℓ1 · · · x · · · pℓn jℓ, sℓ

...
...

...
...

pm1 pmi pmn jm, sm


= COMPILE



h1 hi hn

p11 . . . p1n j1, s1

...
...

...
...

pℓ1 · · · _ · · · pℓn jℓ, sℓ ∪ sx
...

...
...

...
pm1 . . . pmn jm, sm


where sx = {x→ hi}

(Variable case)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 81 / 151

Pattern Matching Compilation

Compilation algorithm – Or

COMPILE



h1 hi hn

p11 . . . p1n j1, s1

...
...

...
...

pℓ1 · · · (p | q) · · · pℓn jℓ, sℓ

...
...

...
...

pm1 . . . pmn jm, sm


= COMPILE



h1 hi hn

p11 . . . p1n j1, s1

...
...

...
...

pℓ1 · · · p · · · pℓn jℓ, sℓ

pℓ1 · · · q · · · pℓn jℓ, sℓ

...
...

...
...

pm1 . . . pmn jm, sm


(Or case)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 82 / 151

Pattern Matching Compilation

Compilation algorithm – Switch

COMPILE (P) =



i← PICKCOLUMN(P)

P =



h1 hi hn

p11 p1i p1n j1, s1

...
...

...
...

pℓ1 · · · pℓi · · · pℓn jℓ, sℓ

...
...

...
...

pm1 pmi pmn jm, sm


Tags = GETTAGS(p1i , . . . , p

m
i)

∀tag ∈ Tags,Ptag = EXPAND(P, type(hi), hi)

Switch(hi)
{

tag 7→ COMPILE
(
Ptag

)}

(Switch case)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 83 / 151

Pattern Matching Compilation

Compilation algorithm – Expand

Inputs Outputs
τ tag New Headers Matrix transformation

⟨τ0, . . . , τl⟩
(
h.0 · · · h.ℓ

) ⟨p0, . . . , pℓ⟩ 7→
(
p0 · · · pℓ

)
7→
(

. . .
)

∑
1⩽i⩽ℓ

Ki(τi) Ki0

(
h.Ki0

) Ki0(p) 7→
(
p
)

Ki(. . .) 7→ ∅
7→
(

. . .
)

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 84 / 151

Pattern Matching Compilation

Compilation algorithm – Picking a column

How to pick a column?
No clear answer, we want to minimize:
(1) The longest path length, (2) The size of the decision trees.
⇒ Heuristics!

Example of heuristics:

First row that has a pattern

Small arity

The most “needed” columns

. . .

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 85 / 151

Pattern Matching Compilation

To decision trees ? in OCaml
How do we check the head constructors in reality?

⇒ Depends on the language!

Memory Values in OCaml

Blocks Unboxed constants

&64 header field 0 . . . field k − 1 w.1 (where w.1 = (w << 1) | 164)

τ0 = None + Some(A+B + C(u32)) memory values

None Some (A) Some (B) Some (C (n))

0 . . . 01 &

0 . . . 0 0 . . . 01

&

0 . . . 0 0 . . . 11

&

0 . . . 0 & 0 . . . 0 n.1

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 86 / 151

Pattern Matching Compilation

To decision trees ? in OCaml
How do we check the head constructors in reality? ⇒ Depends on the language!

Memory Values in OCaml

Blocks Unboxed constants

&64 header field 0 . . . field k − 1 w.1 (where w.1 = (w << 1) | 164)

τ0 = None + Some(A+B + C(u32)) memory values

None Some (A) Some (B) Some (C (n))

0 . . . 01 &

0 . . . 0 0 . . . 01

&

0 . . . 0 0 . . . 11

&

0 . . . 0 & 0 . . . 0 n.1

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 86 / 151

Pattern Matching Compilation

To real decision trees!

Combine

The base decision tree

Specification of the language

OCaml decision tree
switch(v & 1)

0 7→ switch((∗v).1 & 1)

1 7→ switch((∗v).1)

01 7→ 0, ∅

11 7→ 1, ∅

0 7→ 2, {n 7→ (∗(∗v).1).1 }

1 7→ 0, ∅

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 87 / 151

Pattern Matching Compilation

How to implement integer-level switches ?

The CPU doesn’t have switches!
Switch implementation: highly depends on the instruction set:

If-trees

Bitmasks

Jump-tables

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 88 / 151

Pattern Matching Compilation

Big example
A big example (interpreter for a stack language):
matching (a, slist, clist) with

| _ , _, Cons(Ldi, c) -> 1

| _ , _, Cons(Push, c) -> 2

| Int(n2) , Cons (Val (Int (n1)), s), Cons(IOp, c) -> 3

| Int(_) , _, Cons(Test,_) -> 4

| Int(_) , _, Cons(Test,_) -> 5

| _ , _, Cons(Extend,c) -> 6

| _ , _, Cons(Search,c) -> 7

| _ , _, Cons(Pushenv,c) -> 8

| _ , Cons(Env,s), Cons(Popenv,c) -> 9

| _ , _, Cons(Mkclos,c) -> 10

| _ , _, Cons(Mkclosrec,c) -> 11

| Clo , Cons(Val(v),s), Cons(Apply,c) -> 12

| a , Cons(Code,Cons(Env,s)), Nil -> 13

| a , Nil, Nil -> 14

| _ -> 15

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 89 / 151

Pattern Matching Compilation

c = *(*Δ.3).2 1

c = *(*Δ.3).2 2

c = *(*Δ.3).2
n1 = *(*(*(*Δ.2).1).1).1
n2 = *(*Δ.1).1
s = *(*Δ.2).2

3

15

((*(*(*Δ.2).1).1) & 1) ≠ 0
_

0

((*(*Δ.2).1) & 1) ≠ 0
_

0

((*Δ.2) & 1) ≠ 0
_

0

((*Δ.1) & 1) ≠ 0
_

0

4

((*Δ.1) & 1) ≠ 0
_

0

c = *(*Δ.3).2 6

c = *(*Δ.3).2 7

c = *(*Δ.3).2 8

c = *(*Δ.3).2
s = *(*Δ.2).2 9

*(*Δ.2).1
_

5

((*Δ.2) & 1) ≠ 0
_

0

c = *(*Δ.3).2 10

c = *(*Δ.3).2 11

c = *(*Δ.3).2
s = *(*Δ.2).2
v = *(*(*Δ.2).1).1

12
((*(*Δ.2).1) & 1) ≠ 0

_

0

((*Δ.2) & 1) ≠ 0
_

0
((*Δ.1) & 1) ≠ 0

_

1

*(*Δ.3).1

1

3

5

7

9

11

13

15

17

19

21

a = *Δ.1
s = *(*(*Δ.2).2).2 13

((*Δ.2).2).1
_

5
((*(*Δ.2).2) & 1) ≠ 0

_

0

*(*Δ.2).1
_

3

a = *Δ.1 14
((*Δ.2) & 1) ≠ 0

0

1

((*Δ.3) & 1) ≠ 0
0

1

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 90 / 151

Pattern Matching Compilation

Exo time

Let’s compile the following pattern matrix with the heuristics “first row that has a
pattern”: 

.

⟨A,B⟩ ∅, 1
⟨B, ⟩ ∅, 2

⟨C(x), C(y)⟩ ∅, 3
⟨ , x⟩ ∅, 4



Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 91 / 151

Pattern Matching Compilation

Conclusion

We have seen how to compile pattern matching

Not so trivial! Lot’s of optimization opportunities

Essential in functional languages

Also useful elsewhere: LLVM has similar algorithms for cases on strings

Takeaway⇒ “Niche” features deserve their compilation too

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 92 / 151

Just in Time

1 SSA, Functional Programming in disguise?

2 Pattern Matching Compilation

3 Just in Time
Speculation
Tracing

Gabriel Radanne (M1 - Lyon1 & ENSL) CAP (#14): Beyond ahead-of-time imperative compilation November 6, 2024 93 / 151

A	Toy	Example	

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>

int main(void) {
 char* program;
 int (*fnptr)(void);
 int a;
 program = mmap(NULL, 1000, PROT_EXEC | PROT_READ |
 PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
 program[0] = 0xB8;
 program[1] = 0x34;
 program[2] = 0x12;
 program[3] = 0;
 program[4] = 0;
 program[5] = 0xC3;
 fnptr = (int (*)(void)) program;
 a = fnptr();
 printf("Result = %X\n",a);
}

1)  What	is	the	program	on	the	
left	doing?	

2)  What	is	this	API	all	about?	

3)  What	does	this	program	
have	to	do	with	a	just-in-
time	compiler?	

Just in Time

Slides by Fernando Pereira 103 / 151

A	Toy	Example	

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>

int main(void) {
 char* program;
 int (*fnptr)(void);
 int a;
 program = mmap(NULL, 1000, PROT_EXEC | PROT_READ |
 PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
 program[0] = 0xB8;
 program[1] = 0x34;
 program[2] = 0x12;
 program[3] = 0;
 program[4] = 0;
 program[5] = 0xC3;
 fnptr = (int (*)(void)) program;
 a = fnptr();
 printf("Result = %X\n",a);
}

Just in Time

Slides by Fernando Pereira 104 / 151

A	Toy	Example	

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>

int main(void) {
 char* program;
 int (*fnptr)(void);
 int a;
 program = mmap(NULL, 1000, PROT_EXEC | PROT_READ |
 PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
 program[0] = 0xB8;
 program[1] = 0x34;
 program[2] = 0x12;
 program[3] = 0;
 program[4] = 0;
 program[5] = 0xC3;
 fnptr = (int (*)(void)) program;
 a = fnptr();
 printf("Result = %X\n",a);
}

Just in Time

Slides by Fernando Pereira 105 / 151

A	Toy	Example	

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>

int main(void) {
 char* program;
 int (*fnptr)(void);
 int a;
 program = mmap(NULL, 1000, PROT_EXEC | PROT_READ |
 PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
 program[0] = 0xB8;
 program[1] = 0x34;
 program[2] = 0x12;
 program[3] = 0;
 program[4] = 0;
 program[5] = 0xC3;
 fnptr = (int (*)(void)) program;
 a = fnptr();
 printf("Result = %X\n",a);
}

Just in Time

Slides by Fernando Pereira 106 / 151

Just-in-Time	Compilers	

•  A	JIT	compiler	translates	a	program	into	binary	code	
while	this	program	is	being	executed.	

•  We	can	compile	a	function	as	soon	as	it	is	necessary.	
– This	is	Google's	V8	approach.	

•  Or	we	can	first	interpret	the	function,	and	after	we	
realize	that	this	function	is	hot,	we	compile	it	into	binary.	
– This	is	the	approach	of	Mozilla's	IonMonkey.		

1)	When/where/
why	are	just-in-time	
compilers	usually	
used?	

2)	Can	a	JIT	
compiled	program	
run	faster	than	a	
statically	compiled	
program?	

3)	Which	famous	JIT	
compilers	do	we	
know?	

Just in Time

Slides by Fernando Pereira 107 / 151

There	are	many	JIT	compilers	around	

•  Java	Hotspot	is	one	of	the	most	efficient	JIT	compilers	in	

use	today.	It	was	released	in	1999,	and	has	been	in	use	

since	then.	

•  V8	is	the	JavaScript	JIT	compiler	used	by	Google	Chrome.	

•  IonMonkey	is	the	JavaScript	JIT	compiler	used	by	the	

Mozilla	Firefox.	

•  LuaJIT	(http://luajit.org/)	is	a	trace	based	just-in-
time	compiler	that	generates	code	for	the	Lua	

programming	language.	

•  The	.Net	framework	JITs	CIL	code.	

•  For	Python	we	have	PyPy,	which	runs	on	Cpython.	

Just in Time

Slides by Fernando Pereira 108 / 151

Can	JITs	compete	with	static	compilers?	

http://benchmarksgame.alioth.debian.org/

How	can	an	interpreted	
language	run	faster	
than	a	compiled	
language?	

Just in Time

Slides by Fernando Pereira 109 / 151

Tradeoffs	

•  There	are	many	tradeoffs	involved	in	the	JIT	compilation	
of	a	program.	

•  The	time	to	compile	is	part	of	the	total	execution	time	of	
the	program.	

•  We	may	be	willing	to	run	simpler	and	faster	
optimizations	(or	no	optimization	at	all)	to	diminish	the	
compilation	overhead.	

•  And	we	may	try	to	look	at	runtime	information	to	
produce	better	codes.	
– Profiling	is	a	big	player	here.	

•  The	same	code	may	be	compiled	many																							
times!	

Why	would	we	
compile	the	same	
code	many	times?	

Just in Time

Slides by Fernando Pereira 110 / 151

Example:	Mozilla's	IonMonkey	

Parser

Optimizer

Code
Generator

function inc(x) {

 return x + 1;

}

JavaScript source code

mov 0x28(%rsp),%r10

shr $0x2f,%r10

cmp $0x1fff1,%r10d

je 0x1b

jmpq 0x6e

mov 0x28(%rsp),%rax

mov %eax,%ecx

mov $0x7f70b72c,%r11

mov (%r11),%rdx

cmp %rdx,%rsp

jbe 0x78

add $0x1,%ecx

jo 0xab

mov $0xfff88000,%rax

retq

Native code

Bytecodes

00000: getarg 0

00003: one

00004: add

00005: return

00006: stop

LIR

label ()

parameter ([x:1 (arg:0)])

parameter ([x:2 (arg:8)])

start ()

unbox ([i:3]) (v2:r)

checkoverrecursed()t=([i:4])

osipoint ()

addi ([i:5 (!)]) (v3:r), (c)

box ([x:6]) (v5:r)

return () (v6:rcx)

resumepoint 4 2 6

parameter -1 Value

resumepoint 4 2 6

parameter 0 Value

constant undef Undefined

start

unbox parameter4 Int32

resumepoint 4 2 6

checkoverrecursed

constant 0x1 Int32

add unbox10 const14 Int32

return add16

MIR

Interpreter

Compiler

IonMonkey	is	one	of	the	
JIT	compilers	used	by	the	
Firefox	browser	to	execute	
JavaScript	programs.	

This	compiler	is	tightly	
integrated	with	
SpiderMonkey,	the	
JavaScript	interpreter.	

SpiderMonkey	invokes	
IonMonkey	to	JIT	compile	
a	function	either	if	it	is	
often	called,	or	if	it	has	a	
loop	that	executes	for	a	
long	time.	

Why	do	we	have	so	
many	different	
intermediate	
representations	here?	

Just in Time

Slides by Fernando Pereira 111 / 151

When	to	Invoke	the	JIT	Compiler?	

•  Compilation	has	a	cost.	
– Functions	that	execute	only	once,	for	a	few	iterations,	
should	be	interpreted.	

•  Compiled	code	runs	faster.	
– Functions	that	are	called	often,	or	that	loop	for	a	long	time	
should	be	compiled.	

•  And	we	may	have	different	optimization	levels…	

How	to	decide	when	
to	compile	a	piece	of	
code?	

As	an	example,	SpiderMonkey	uses	three	
execution	modes:	the	first	is	interpretation;	
then	we	have	the	baseline	compiler,	which	
does	not	optimize	the	code.	Finally	
IonMonkey	kicks	in,	and	produces	highly	
optimized	code.	

Just in Time

Slides by Fernando Pereira 112 / 151

The	Compilation	Threshold	

Interpreted Code

Unoptimized Native Code

Optimized Native Code Baseline Compiler

Optimizing Compiler

Number of instructions processed (either natively or via interpretation)

Number of instructions compiled

T
im

e

Many	execution	environments	associate	counters	with	branches.	Once	
a	counter	reaches	a	given	threshold,	that	code	is	compiled.	But	
defining	which	threshold	to	use	is	very	difficult,	e.g.,	how	to	minimize	
the	area	of	the	curve	below?	JITs	are	crowded	with	magic	numbers.	

Just in Time

Slides by Fernando Pereira 113 / 151

The	Million-Dollars	Question	

•  When	to	invoke	the	JIT	compiler?	

1)  Can	you	come	up	with	a	strategy	to	invoke	
the	JIT	compiler	that	optimizes	for	speed?	

2)  Do	you	have	to	execute	the	program	a	bit	
before	calling	the	JIT?	

3)  How	much	information	do	you	need	to	make	
a	good	guess?	

4)  What	is	the	price	you	pay	for	making	a	
wrong	prediction?	

5)  Which	programs	are	easy	to	predict?	

6)  Do	the	easy	programs	reflect	the	needs	of	
the	users?	

Just in Time

Slides by Fernando Pereira 114 / 151

Just in Time Speculation

3 Just in Time
Speculation
Tracing

Slides by Fernando Pereira 115 / 151

Speculation	

•  A	key	trick	used	by	JIT	compilers	is	speculation.	
•  We	may	assume	that	a	given	property	is	true,	and	then	

we	produce	code	that	capitalizes	on	that	speculation.	
•  There	are	many	different	kinds	of	speculation,	and	they	

are	always	a	gamble:	

Just in Time Speculation

Slides by Fernando Pereira 116 / 151

Speculation	

•  A	key	trick	used	by	JIT	compilers	is	speculation.	
•  We	may	assume	that	a	given	property	is	true,	and	then	

we	produce	code	that	capitalizes	on	that	speculation.	
•  There	are	many	different	kinds	of	speculation,	and	they	

are	always	a	gamble:	

–  Let's	assume	that	the	type	of	a	variable	is	an	
integer,	

•  but	if	we	have	an	integer	overflow…	
–  Let's	assume	that	the	properties	of	the	object	are	

fixed,	
•  but	if	we	add	or	remove	something	from	the	object…	

–  Let's	assume	that	the	target	of	a	call	is	always	the	
same,	

•  but	if	we	point	the	function	reference	to	another	
closure…	

Just in Time Speculation

Slides by Fernando Pereira 117 / 151

Inline	Caching	

•  One	of	the	earliest,	and	most	effective,	types	of	
specialization	was	inline	caching,	an	optimization	
developed	for	the	Smalltalk	programming	language♧.	

•  Smalltalk	is	a	dynamically	typed	programming	language.	
•  In	a	nutshell,	objects	are	represented	as	hash-tables.	
•  This	is	a	very	flexible	programming	model:	we	can	add	or	

remove	properties	of	objects	at	will.	
•  Languages	such	as	Python	and	Ruby	also	implement	

objects	in	this	way.	
•  Today,	inline	caching	is	the	key	idea	behind	JITs's	high	

performance	when	running	JavaScript	programs.	

♧:	Efficient	implementation	of	the	smalltalk-80	system,	POPL	(1984)	

Just in Time Speculation

Slides by Fernando Pereira 118 / 151

Using	Python	Objects	

def fill(set, b, e, s):
 for i in range(b, e, s):
 set.add(i)

s0 = Set(15)
fill(s0, 10, 20, 3)

s1 = ErrorSet(15)
fill(s1, 10, 14, 3)

class X:
 def __init__(self):
 self.a = 0

fill(X(), 1, 10, 3)
>>> AttributeError: X instance
>>> has no attribute 'add'

1)  What	does	the	function	fill	
do?	

2)  Why	did	the	third	call	of	fill	
failed?	

3)  What	are	the	requirements	
that	fill	expects	on	its	
parameters?	

Just in Time Speculation

Slides by Fernando Pereira 119 / 151

Duck	Typing	

def fill(set, b, e, s):
 for i in range(b, e, s):
 set.add(i)

class Num:
 def __init__(self, num):
 self.n = num
 def add(self, num):
 self.n += num
 def __str__(self):
 return str(self.n)

n = Num(3)
print n
fill(n, 1, 10, 1)
...

Do	we	get	an	error	
here?	

Just in Time Speculation

Slides by Fernando Pereira 120 / 151

Duck	Typing	

class Num:
 def __init__(self, num):
 self.n = num
 def add(self, num):
 self.n += num
 def __str__(self):
 return str(self.n)

n = Num(3)
print n
fill(n, 1, 10, 1)
print n

>>> 3
>>> 48

The	program	works	just	fine.	The	only	
requirement	that	fill	expects	on	its	
first	argument	is	that	it	has	a	method	
add	that	takes	two	parameters.	Any	
object	that	has	this	method,	and	can	
receive	an	integer	on	the	second	
argument,	will	work	with	fill.	This	
is	called	duck	typing:	if	it	quacks	like	a	
duck,	swims	like	a	duck,	eats	like	a	
duck,	then	it	is	a	duck!	

Just in Time Speculation

Slides by Fernando Pereira 121 / 151

The	Price	of	Flexibility	

•  Objects,	in	these	dynamically	typed	languages,	are	for	
the	most	part	implemented	as	hash	tables.	
– That	is	cool:	we	can	add	or	remove	methods	without	much	
hard	work.	

def fill(set, b, e, s):
 for i in range(b, e, s):
 set.add(i)

– And	mind	how	much	code	we	
can	reuse?	

•  But	method	calls	are	pretty	
expensive.	

Mammal d

__
in

it_
_(

se
lf,

 c
ap

)

add(self, elem)
del(self, elem)

contains(self, elem)
How	can	we	make	
these	calls	cheaper?	

Just in Time Speculation

Slides by Fernando Pereira 122 / 151

Virtual	Tables	

class	Animal	{	
		public	void	eat()	{	
				System.out.println(this	+	"	is	eating");	
		}	
		public	String	toString	()	{	return	"Animal";	}	
}	

class	Mammal	extends	Animal	{	
		public	void	suckMilk()	{	
				System.out.println(this	+	"	is	sucking");	
		}	
		public	String	toString	()	{	return	"Mammal";	}	
		public	void	eat()	{	
				System.out.println(this	+	"	is	eating	like	a	mammal");	}	
}	

class	Dog	extends	Mammal	{	
		public	void	bark()	{	
				System.out.println(this	+	"	is	barking");	
		}	
		public	String	toString	()	{	return	"Dog";	}	
		public	void	eat()	{	
				System.out.println(this	+	",	is	eating	like	a	dog");	
		}	
}	

Animal
toString
eat

Mammal
toString
eat
suckMilk

Dog
toString
eat
suckMilk
bark

Animal a

Animal m

Mammal d

How	to	locate	the	
target	of	d.eat()?	

Just in Time Speculation

Slides by Fernando Pereira 123 / 151

Virtual	Call	

Dog
toString
eat
suckMilk
bark

Mammal d

d.eat()
First, we need to know the table d is pointing to. This requires one pointer
dereference:

Second, we need to know the offset
of the method eat, inside the table.
This offset is always the same for
any class that inherits from Animal,
so we can jump blindly.

Animal
toString
eat

Mammal
toString
eat
suckMilk

public void eat() {

 System.out.println ("Eats like a dog");

}

public void eat() {

 System.out.println ("Eats like a mammal");

}

public void eat() {

 System.out.println ("Eats like an animal");

}

Can	we	have	virtual	
tables	in	duck	typed	
languages?	

Just in Time Speculation

Slides by Fernando Pereira 124 / 151

Monomorphic	Inline	Cache	

class Num:
 def __init__(self, n):
 self.n = n
 def add(self, num):
 self.n += num

def fill(set, b, e, s):
 for i in range(b, e, s):
 set.add(i)

n = Num(3)
print n
fill(n, 1, 10, 1)
print n

>>> 3
>>> 48

The	first	time	we	generate	code	for	a	call,	
we	can	check	the	target	of	that	call.	We	
know	this	target,	because	we	are	
generating	code	at	runtime!	

fill(set,	b,	e,	s):	
		for	i	in	range(b,	e,	s):	
				if	isinstance(set,	Num):	
						set.n	+=	i	
				else:	
						add	=	lookup(set,	"add")	
						add(set,	i)	

Could	you	optimize	this	code	
even	further	using	classic	
compiler	transformations?	

Just in Time Speculation

Slides by Fernando Pereira 125 / 151

Inlining	on	the	Method	

•  We	can	also	speculate	on	the	method	name,	instead	of	
doing	it	on	the	calling	site:	

fill(set,	b,	e,	s):	
		for	i	in	range(b,	e,	s):	
				__f_add(set,	i)	

__f_add(o,	e):	
		if	isinstance(o,	Num):	
				o.n	+=	e	
		else:	
				f	=	lookup(o,	"add")	
				f(o,	e)	

1)  Is	there	any	advantage	
to	this	approach,	when	
compared	to	inlining	at	
the	call	site?	

2)  Is	there	any	
disadvantage?	

3)  Which	one	is	likely	to	
change	more	often?	

fill(set,	b,	e,	s):	
		for	i	in	range(b,	e,	s):	
				if	isinstance(set,	Num):	
						set.n	+=	i	
				else:	
						add	=	lookup(set,	"add")	
						add(set,	i)	

Just in Time Speculation

Slides by Fernando Pereira 126 / 151

Polymorphic	Calls	

•  If	the	target	of	a	call	changes	during	the	execution	of	the	
program,	then	we	have	a	polymorphic	call.	

•  A	monomorphic	inline	cache	would	have	to	be	
invalidated,	and	we	would	fall	back	into	the	expensive	
quest.	

>>> l = [Num(1), Set(1), Num(2), Set(2), Num(3), Set(3)]
>>> for o in l:
... o.add(2)
...

Is	there	anything	we	
could	do	to	optimize	
this	case?	

Just in Time Speculation

Slides by Fernando Pereira 127 / 151

Polymorphic	Calls	

•  If	the	target	of	a	call	changes	during	the	execution	of	the	
program,	then	we	have	a	polymorphic	call.	

•  A	monomorphic	inline	cache	would	have	to	be	
invalidated,	and	we	would	fall	back																																			
into	the	expensive	quest.	

>>> l = [Num(1), Set(1), Num(2), Set(2),
Num(3), Set(3)]
>>> for o in l:
... o.add(2)
...

fill(set,	b,	e,	s):	
				for	i	in	range(b,	e,	s):	
								__f_add(set,	i)	

__f_add(o,	e):	
				if	isinstance(o,	Num):	
								o.n	=	e	
				elif	isinstance(o,	Set):	
								(index,	bit)	=	getIndex(e)	
								o.vector[index]	|=	bit				
				else:	
								f	=	lookup(o,	"add")	
								f(o,	e)	

Would	it	not	be	better	
just	to	have	the	code	
below?	

for	i	in	range(b,	e,	s):	
				lookup(set,	"add")	
				…	

Just in Time Speculation

Slides by Fernando Pereira 128 / 151

The	Speculative	Nature	of	Inline	Caching	

•  Python	–	as	well	as	
JavaScript,	Ruby,	Lua	and	
other	very	dynamic	
languages	–	allows	the	
user	to	add	or	remove	
methods	from	an	object.	

•  If	such	changes	in	the	
layout	of	an	object	
happen,	then	the	
representation	of	that	
object	must	be	
recompiled.	In	this	case,	
we	need	to	update	the	
inline	cache.	

from	Set	import	INT_BITS,	getIndex,	Set	

def	errorAdd(self,	element):	
		if	(element	>	self.capacity):	
				raise	IndexError(str(element)	+	
						"	is	out	of	range.")	
		else:	
				(index,	bit)	=	getIndex(element)	
				self.vector[index]	|=	bit	
				print	element,	"added	successfully!"	

Set.add	=	errorAdd	
s	=	Set(60)	
s.errorAdd(59)	
s.remove(59)	

Just in Time Speculation

Slides by Fernando Pereira 129 / 151

The	Benefits	of	the	Inline	Cache	

•  Monomorphic	inline	cache	hit:	
– 10	instructions	

•  Polymorphic	Inline	cache	hit:	
– 35	instructions	if	there	are	10	types	
– 60	instructions	if	there	are	20	types	

•  Inline	cache	miss:	1,000	–	4,000	instructions.	

These	numbers	have	been	obtained	by	Ahn	et	al.	for	JavaScript,	
in	the	Chrome	V8	compiler♤:	

♤:	Improving	JavaScript	Performance	by	Deconstructing	the	Type	System,	PLDI	(2014)	

Which	factors	
could	justify	
these	numbers?	

Just in Time Speculation

Slides by Fernando Pereira 130 / 151

Just in Time Tracing

3 Just in Time
Speculation
Tracing

Slides by Fernando Pereira 131 / 151

What	is	a	JIT	trace	compiler?	

•  A	trace-based	JIT	compiler	translates	only	the	most	
executed	paths	in	the	program’s	control	flow	to	machine	
code.	

•  A	trace	is	a	linear	sequence	of	code,	that	represents	a	hot	
path	in	the	program.	

•  Two	or	more	traces	can	be	combined	into	a	tree.	

•  Execution	alternates	between	traces	and	interpreter.	

What	are	the	advantages	
and	disadvantages	of	trace	
compilation	over	traditional	
method	compilation?	

Just in Time Tracing

Slides by Fernando Pereira 132 / 151

The	anatomy	of	a	trace	compiler	

•  TraceMonkey	is	the	trace	based	JIT	compiler	used	in	the	
Mozilla	Firefox	Browser.	

file.js	 AST	 Bytecodes	
Trace	
engine	

LIR	 x86	

jsparser	 jsemitter	 jsinterpreter	 JIT	

SpiderMonkey	 nanojit	

Just in Time Tracing

Slides by Fernando Pereira 133 / 151

From	source	to	bytecodes	

function foo(n){
 var sum = 0;
 for(i = 0; i < n; i++){
 sum+=i;
 }
 return sum;
}

00:		getname	n	
02:		setlocal	0	
06:		zero	
07:		setlocal	1	
11:		zero	
12:		setlocal	2	
16:		goto	35	(19)	
19:		trace	
20:		getlocal	1	
23:		getlocal	2	
26:		add	
27:		setlocal	1	
31:		localinc	2	
35:		getlocal	2	
38:		getlocal	0	
41:		lt	
42:		ifne	19	(-23)	
45:		getlocal	1	
48:		return	
49:		stop	

AST	jsparser jsemitter

Can	you	see	the	
correspondence	
between	source	code	
and	bytecodes?	

Just in Time Tracing

Slides by Fernando Pereira 134 / 151

00:		getname	n	
02:		setlocal	0	
06:		zero	
07:		setlocal	1	
11:		zero	
12:		setlocal	2	
16:		goto	35	(19)	
19:		trace	
20:		getlocal	1	
23:		getlocal	2	
26:		add	
27:		setlocal	1	
31:		localinc	2	
35:		getlocal	2	
38:		getlocal	0	
41:		lt	
42:		ifne	19	(-23)	
45:		getlocal	1	
48:		return	
49:		stop	

The	trace	engine	kicks	in	

•  TraceMonkey	interprets	the	bytecodes.	
•  Once	a	loop	is	found,	it	may	decide	to	ask	

Nanojit	to	transform	it	into	machine	code	
(e.g,	x86,	ARM).	
– Nanojit	reads	LIR	and	produces	x86	

•  Hence,	TraceMonkey	must	convert	this	trace	
of	bytecodes	into	LIR	

Just in Time Tracing

Slides by Fernando Pereira 135 / 151

00:		getname	n	
02:		setlocal	0	
06:		zero	
07:		setlocal	1	
11:		zero	
12:		setlocal	2	
16:		goto	35	(19)	
19:		trace	
20:		getlocal	1	
23:		getlocal	2	
26:		add	
27:		setlocal	1	
31:		localinc	2	
35:		getlocal	2	
38:		getlocal	0	
41:		lt	
42:		ifne	19	(-23)	
45:		getlocal	1	
48:		return	
49:		stop	

L: load “i” %r1
 load “sum” %r2
 add %r1 %r2 %r1
 %p0 = ovf()
 bra %p0 Exit1
 store %r1 “sum”
 inc %r2
 store %r2 “i”
 %p0 = ovf()
 bra %p0 Exit2
 load “i” %r0
 load “n” %r1
 lt %p0 %r0 %r1
 bne %p0 L

Bytecodes

Nanojit LIR

From	bytecodes	to	LIR	

Just in Time Tracing

Slides by Fernando Pereira 136 / 151

00:		getname	n	
02:		setlocal	0	
06:		zero	
07:		setlocal	1	
11:		zero	
12:		setlocal	2	
16:		goto	35	(19)	
19:		trace	
20:		getlocal	1	
23:		getlocal	2	
26:		add	
27:		setlocal	1	
31:		localinc	2	
35:		getlocal	2	
38:		getlocal	0	
41:		lt	
42:		ifne	19	(-23)	
45:		getlocal	1	
48:		return	
49:		stop	

L: load “i” %r1
 load “sum” %r2
 add %r1 %r2 %r1
 %p0 = ovf()
 bra %p0 Exit1
 store %r1 “sum”
 inc %r2
 store %r2 “i”
 %p0 = ovf()
 bra %p0 Exit2
 load “i” %r0
 load “n” %r1
 lt %p0 %r0 %r1
 bne %p0 L

Bytecodes

Nanojit LIR

From	bytecodes	to	LIR	

Just in Time Tracing

Slides by Fernando Pereira 137 / 151

Why	do	we	have	overflow	tests?	

•  Many	scripting	languages	represent	numbers	as	floating-
point	values.	
– Arithmetic	operations	are	not	very	efficient.	

•  The	compiler	sometimes	is	able	to	infer	that	these	
numbers	can	be	used	as	integers.	
– But	floating-point	numbers	are	larger	than	integers.	
– This	is	another	example	of	speculative	optimization.	

– Thus,	every	arithmetic	operation	that	might	cause	an	
overflow	must	be	preceded	by	a	test.	If	the	test	fails,	then	
the	runtime	engine	must	change	the	number's	type	back	
to	floating-point.	

Just in Time Tracing

Slides by Fernando Pereira 138 / 151

L:movl -32(%ebp), %eax
 movl %eax, -20(%ebp)
 movl -28(%ebp), %eax
 movl %eax, -16(%ebp)
 movl -20(%ebp), %edx
 leal -16(%ebp), %eax
 addl %edx, (%eax)
 call _ovf
 testl %eax, %eax
 jne Exit1
 movl -16(%ebp), %eax
 movl %eax, -28(%ebp)
 leal -20(%ebp), %eax
 incl (%eax)
 call _ovf
 testl %eax, %eax
 jne Exit2
 movl -24(%ebp), %eax
 movl %eax, -12(%ebp)
 movl -20(%ebp), %eax
 cmpl -12(%ebp), %eax
 jl L

The overflow
tests are also
translated into
machine code.

From	LIR	to	assembly	

Nanojit LIR

x86 Assembly

L: load “i” %r1
 load “sum” %r2
 add %r1 %r2 %r1
 %p0 = ovf()
 bra %p0 Exit1
 store %r1 “sum”
 inc %r2
 store %r2 “i”
 %p0 = ovf()
 bra %p0 Exit2
 load “i” %r0
 load “n” %r1
 lt %p0 %r0 %r1
 bne %p0 L

Can	you	come	up	
with	an	optimization	
to	eliminate	some	of	
the	overflow	checks?	

Just in Time Tracing

Slides by Fernando Pereira 139 / 151

How	to	eliminate	the	redundant	tests	

•  We	use	range	analysis:	
– Find	the	range	of	integer	values	that	a	variable	might	hold	
during	the	execution	of	the	trace.	

function foo(n){
 var sum = 0;
 for(i = 0; i < n; i++){
 sum+=i;
 }
 return sum;
}

Example:	if	we	know	
that	n	is	10,	and	i	is	
always	less	than	n,	then	
we	will	never	have	an	
overflow	if	we	add	1	to	i.	

Just in Time Tracing

Slides by Fernando Pereira 140 / 151

Cheating	at	runtime	

•  A	static	analysis	must	be	very	conservative:	if	we	do	not	
know	for	sure	the	value	of	n,	then	we	must	assume	that	it	
may	be	anywhere	in	[-∞,	+∞].	

•  However,	we	are	not	a	static	analysis!	

•  We	are	compiling	at	
runtime!	

•  To	know	the	value	of	
n,	just	ask	the	
interpreter.	

function foo(n){
 var sum = 0;
 for(i = 0; i < n; i++){
 sum+=i;
 }
 return sum;
}

Just in Time Tracing

Slides by Fernando Pereira 141 / 151

How	the	algorithm	works	

•  Create	a	constraint	graph.	
– While	the	trace	is	translated	to	LIR.	

•  Propagate	range	intervals.	
– Before	sending	the	LIR	to	Nanojit.	
– Using	infinite	precision	arithmetic.	

•  Eliminate	tests	whenever	it	is	safe	to	do	so.	
– We	tell	Nanojit	that	code	for	some	overflow	tests	should	
not	be	produced.	

Just in Time Tracing

Slides by Fernando Pereira 142 / 151

Nx	

lt	

inc	

leq	 gt	 geq	 eq	

!	

Name	

Arithmetic	

Relational	

Assignment	

The	constraint	graph	

•  We	have	four	categories	of	vertices:	

dec	 add	 sub	 mul	

Just in Time Tracing

Slides by Fernando Pereira 143 / 151

Building	the	constraint	graph	

•  We	start	building	the	constraint	
graph	once	TraceMonkey	starts	
recording	a	trace.	

•  TraceMonkey	starts	at	the	branch	
instruction,	which	is	the	first	
instruction	visited	in	the	loop.	
– Although	it	is	at	the	end	of	the	
trace.	

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

In	terms	of	code	generation,	
can	you	recognize	the	pattern	
of	bytecodes	created	for	the	
test	if	n	<	i	goto	L?	

Just in Time Tracing

Slides by Fernando Pereira 144 / 151

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

n0	

[10,	10]	

We check the
interpreter’s
stack to find out
that n is 10.

Just in Time Tracing

Slides by Fernando Pereira 145 / 151

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

n0	

[10,	10]	

i0	

[1,	1]	

i started holding 0, but at this point, its value is already 1.

Why	we	do	not	
initialize	i	with	0	
in	our	constraint	
graph?	

Just in Time Tracing

Slides by Fernando Pereira 146 / 151

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

n0	

[10,	10]	

lt	

i0	

[1,	1]	

n1	 i1	

Comparisons are great! We can learn new information about variables

Now we know that

i is less than 10, so

we rename it to i1

we also rename n

We	are	renaming	
after	conditionals.	
Which	program	
representation	are	
we	creating	
dynamically?	

Just in Time Tracing

Slides by Fernando Pereira 147 / 151

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

n0	

[10,	10]	

lt	

i0	

[1,	1]	

n1	 i1	

sum0	

[1,	1]	

The current
value of sum on
the interpreter's
stack is 1.

Just in Time Tracing

Slides by Fernando Pereira 148 / 151

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

n0	

[10,	10]	

lt	

i0	

[1,	1]	

n1	 i1	

add	sum0	

sum1	

[1,	1]	

For the sum, we get the last version of variable i, which is i1.

Why	do	we	pair	up	
sum0	with	i1,	and	
not	with	i0?	

Just in Time Tracing

Slides by Fernando Pereira 149 / 151

19:		trace	
20:		getlocal	sum	
23:		getlocal	i	
26:		add	
27:		setlocal	sum	
31:		localinc	i	
35:		getlocal	n	
38:		getlocal	i	
41:		lt	
42:		ifne	19	(-23)	

n0	

[10,	10]	

lt	

i0	

[1,	1]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[1,	1]	

The last version of

variable i is still i1

so we use it as a

parameter of the

increment.

Just in Time Tracing

Slides by Fernando Pereira 150 / 151

n0	

[10,	10]	

lt	

i0	

[1,	1]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[1,	1]	

Some variables,
like n, have not
been updated
inside the trace.
We know that they
are constants.

Other variables,
like sum, have
been updated
inside the trace.

Just in Time Tracing

Slides by Fernando Pereira 151 / 151

n0	

[10,	10]	

lt	

i0	

[1,	1]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[1,	1]	

Some variables,
like n, have not
been updated
inside the trace.
We know that they
are constants.

The comparisons

allows us to infer

bounds on the
variables that are

updated in the trace

Other variables,
like sum, have
been updated
inside the trace.

Just in Time Tracing

Slides by Fernando Pereira 152 / 151

n0	

[10,	10]	

lt	

i0	

[-∞,	+∞]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

The	next	phase	of	our	
algorithm	is	the	
propagation	of	range	
intervals.	

We	start	by	assigning	
conservative	i.e,									
[-∞,	+∞],	bounds	to	
the	ranges	of	variables	
updated	inside	the	
trace.	

[-∞,	+∞]	

Just in Time Tracing

Slides by Fernando Pereira 153 / 151

n0	

[10,	10]	

lt	

i0	

[-∞,	+∞]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[-∞,	+∞]	

[10,	10]	 [-∞,	9]	

[-∞,	+∞]	

We	are	doing	abstract	
interpretation.	We	need	
an	abstract	semantics	
for	every	operation	in	
our	constraint	graph.	As	
an	example,	we	know	
that	[-∞,	+∞]	+	[-∞,	9]	=	
[-∞,	+∞]	

Just in Time Tracing

Slides by Fernando Pereira 154 / 151

n0	

[10,	10]	

lt	

i0	

[-∞,	+∞]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[-∞,	+∞]	

[10,	10]	 [-∞,	9]	

[-∞,	+∞]	

[-∞,	10]	

After	range	
propagation	we	
can	check	which	
overflow	tests	are	
really	necessary.	

1)  How	many	overflow	
checks	do	we	have	in	
this	constraint	graph?	

2)  Is	there	any	overflow	
check	that	is	
redundant?	

Just in Time Tracing

Slides by Fernando Pereira 155 / 151

n0	

[10,	10]	

lt	

i0	

[-∞,	+∞]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[-∞,	+∞]	

[10,	10]	 [-∞,	9]	

[-∞,	+∞]	

[-∞,	10]	

This increment
operation will never

cause an overflow,

for it receives at

most the integer 9.

The add operation might cause an
overflow, for one of the inputs – sum – might be very large.

After	range	
propagation	we	
can	check	which	
overflow	tests	are	
really	necessary.	

Just in Time Tracing

Slides by Fernando Pereira 156 / 151

n0	

[10,	10]	

lt	

i0	

[-∞,	+∞]	

n1	 i1	 inc	

i2	add	sum0	

sum1	

[-∞,	+∞]	

[10,	10]	 [-∞,	9]	

[-∞,	+∞]	

[-∞,	10]	

L: load “i” %r1
 load “sum” %r2
 add %r1 %r2 %r1
 %p0 = ovf()
 bra %p0 Exit1
 store %r1 “sum”
 inc %r2
 store %r2 “i”
 %p0 = ovf()
 bra %p0 Exit2
 load “i” %r0
 load “n” %r1
 lt %p0 %r0 %r1
 bne %p0 L

✓	

✗	

Just in Time Tracing

Slides by Fernando Pereira 157 / 151

Just in Time Tracing

JIT – Conclusion

Just-In-Time compilation combines dynamic runtime information with static
compilation
Practical approach: Use whatever available to make it fast.
The most used compilers in the world are Web Browsers!

Slides by Fernando Pereira 158 / 151

Just in Time Tracing

Further in Compilation

Many other “compilations” that what we have seen: dynamic languages; objects,
functional, and other paradigms; Data manipulation, and other stranger
computations mode (see DM from previous years!).

Recent “fun” example: implementation of the French Tax System.

Slides by Fernando Pereira 159 / 151

Just in Time Tracing

Domain Specific Languages: the new frontier

Different domains have very different computations: meteo simulations, genome
analysis, cryptography, 3D rendering, Machine Learning, . . .

⇒ The current frontier: How to provide nice languages and efficient compilations
for these varied use-cases?

Slides by Fernando Pereira 160 / 151

	SSA, Functional Programming in disguise?
	Pattern Matching Compilation
	Just in Time

