Setting the Stage:
on the Mechanized Verification of a Compiler

Compilation and Program Analysis (#11)

2024/2025

Yannick ZakowskKil

lrrzia — — i —

ENS DE LYON

Or How | Learned to Stop Worrying...

INn 1956, Nikita Khrushcheyv is addressing western diplomats in Moscow:

Or How | Learned to Stop Worrying...

INn 1956, Nikita Khrushcheyv is addressing western diplomats in Moscow:

“"We will bury you”

Or How | Learned to Stop Worrying...

INn 1956, Nikita Khrushcheyv is addressing western diplomats in Moscow:

“"We will bury you”

It appears that the original Russian sentence something closer to
“"We shall outlive you”

Or How | Learned to Stop Worrying...

INn 1956, Nikita Khrushcheyv is addressing western diplomats in Moscow:

“"We will bury you”

It appears that the original Russian sentence something closer to
“"We shall outlive you”

Khrushchev had a buggy franslator!

Traduttore, traditore’

A nightmare scenario...

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/

Traduttore, traditore’
A nightmare scenario...

our Algorithm satisfies the specification

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/

Traduttore, traditore’
A nightmare scenario...

our Algorithm satisfies the specification

Betterl Our IMPlementation satisfies the SpeCIfication

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/

Traduttore, traditore’
A nightmare scenario...

our Algorithm satisfies the specification
Betterl Our IMPlementation satisfies the SpeCIfication

But the compi\er has changed the meaning of my program

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/

Traduttore, traditore’
A nightmare scenario...

our Algorithm satisfies the specification
Betterl Our IMPlementation satisfies the SpeCIfication

But the Compi\er has changed the meaning of my program

The executable code does Not satisfy the SpecCification

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/

Traduttore, traditore’
A nightmare scenario...

our Algorithm satisfies the specification
Betterl Our IMPlementation satisfies the SpeCIfication

But the compi\er has changed the meaning of my program

The EXeCUTable code does Not satisfy the specifico’rion

" ‘Natural \ongucges are hard. But when it comes to progrommmg .,
languages, can we guarantee that our franslators won't betray us?|

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/

Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce

; 4/'»‘" ~ "" 3 " '.“, e e '«"T
. ‘. b "
9 vm]

Al A~
4 K -
7 R
q ’, : Ry

.‘; g .“ l ‘.
N
) A B TDY, [T e 5 T OO SI IES

Note: gcc Is composed of roughly 15 millions line of codes...

O

Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce

; 4/'»‘" ~ "" 3 " '.“, e e '«"T
. ‘. b "
9 vm]

Al A~
4 K -
7 R
q ’, : Ry

.‘; g .“ l ‘.
N
) A B TDY, [T e 5 T OO SI IES

input

Note: gcc Is composed of roughly 15 millions line of codes...

O

Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce

P ° I, 3 B A et Z
4 "».'- - "' o " '.“ PN, -,’,-
" : " ‘
v B
» b .
bl)
] Ll
g K -
] 4
9 : : P, ¢
.0 N
0 Y
Lt H
[A Rv
" g C .“‘.
b? o ‘. s -;, =y e —,.-__»_-. :l 3
PPy S > WIS R

input

Valid C program
fit fo stress test your compiler

Note: gcc Is composed of roughly 15 millions line of codes...

O

Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce

P ° I, 3 B A et Z
4 "».'- - "' o " '.“ PN, -,’,-
" : " ‘
v B
» b .
bl)
] Ll
g K -
] 4
9 : : P, ¢
.0 N
0 Y
Lt H
[A Rv
" g C .“‘.
b? o ‘. s -;, =y e —,.-__»_-. :l 3
PPy S > WIS R

output

Valid C program
fit fo stress test your compiler

Note: gcc Is composed of roughly 15 millions line of codes...

O

Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce

P ° I, 3 B A = >
4 '».'- - "' o '." PN, -,’,-
" : "
v). /8
» b .
bl)
] Ll
g K -

3 4

9 : : P, ¢

.0 I

. e Y
Lf- R)

[A Rv
" g C .“‘.
4

) TR B IOV, | Do R, TG NES.

PPy S > WIS oo —

output

Valid C program
fit to stress test your compiler Some x86 assembly

Note: gcc is composed of roughly 15 millions line of codes...

O

Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce

p o A EIMr B Bae aace __ .
P SO AR A B YRR R P e s
. . .
) .
% 74
: ‘. "l, .
v ;
J p
. ‘P
R b
9 2
9 b
-

§ gcc § oulput
} ghc
Valid C program Hersboiiesmriniimail
fit fo stress test your compiler Some x86 assembly

Simplest solution: differential testing. Have your compilers argue!

Note: gcc Is composed of roughly 15 millions line of codes...

O

It’s hard work, but it can be done!

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

o o _

But C is no ML: a syntactically correct program is likely no Cl|
Undefined behaviours: null pointer dereference, array access out-of-bound, etc...
Your random generator must be paired with complex static analyses

It’'s hard work, but it’s worth it!

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

o “Every compner we fested was found to crash |
ond also to silently generafe wrong code when presented with valid mpu’r "

It’'s hard work, but it’s worth it!

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

“Every compner we ’res’red WQS found ’ro crash - ;
ond also to silently generafte wrong code when presented with valid input.”

Here enters the hero of our story: the Verifled compi\er

Pre-history

CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS®

JOHN McCARTHY and JAMES PAINTER
1967

1 Introduction

This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof are
all intended to serve as prototypes for the more complicated task of proving the
correctness of usable compilers. The ultimate goal, as outlined in references
1], [2], [3] and [4] is to make it possible to use a computer to check proofs that
compilers are correct.

Pre-history

CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS®

JOHN McCARTHY and JAMES PAINTER
1967

1 Introduction

This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof are
all intended to serve as prototypes for the more complicated task of proving the
correctness of usable compilers. The ultimate goal, as outlined in references
1], [2], [3] and [4] is to make it possible to use a computer to check proofs that
compilers are correct.

Pre-history

CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS®

JOHN McCARTHY and JAMES PAINTER
1967

1 Introduction

This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof are
all intended to serve as prototypes for the more complicated task of proving the
correctness of usable compilers. The ultimate goal, as outlined in references
1], [2], [3] and [4] is to make it possible to use a computer to check proofs that
compilers are correct.

Pre-history

Proving Compiler Correctness 1972
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

9

Pre-history

Proving Compiler Correctness 1972
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

9

Pre-history

Proving Compiler Correctness 1972
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

9

Pre-history

b Compiler Correctness

1972
/ ; hanized Logic
5 nd R. Wevyhrauch
nce Department Turned 90 Yes’rerdcy!
= rsity
. 1976's Turing Prize (with
| 2 ,'f | | RO blﬂ)

Y, sk of machine-checking the proof of a simple compiling
oof-checking program is LCF, an implementation of a logic
nctions due to Dana Scott, in which the abstract syntax

= semantics of programming languages can be naturally

urce language in our example is a simple ALGoL-like

i ignments, conditionals, whiles and compound statements.
il RS e is an assembly language for a machine with a pushdown
;‘{”’é i S ethods are used to give structure to the proof, which is
s "’1?‘1‘ X utline. However, we present in full the expression-compiling
gt m. More than half of the complete proof has been machine
nticipate no difficulty with the remainder. We discuss our

ucting the proof, which indicates that a large part of it
to reduce the human contribution.

9

CompCert (2009-) : a Verified C99 Optimising Compiler

-~ ~ .
(\ Coq /, P -
~ - < ™~
R <~ Other "\
N (
N \ 4
typzz;s;rll(er ' - D N) \I7a nguagesz 4 Type Graph Printing to asm | Pr ogramm ed
! { — - e . . .
simplifier (CIL) « mini-ML) ST reconstruction coloring syntax in Caml
o /
/

\ /
AN /

PowerPC

assembly
_____ -7 / -] — . - Layout of the Generation of
7 TS g / Initial Stack pre _ GFG construction; Validation | | Validation Linearization activation Power PC
" Program . v translation allocation instruction recognition of the CFG record instructions Progra mmed and
. _prover 7 proved in Coq
““““““ ¥ ‘
- =~ ~
y \ . . Data .
[Model) Dataflow analyses Constant Common »| Register allocation by struchyres Machine Memory
e checker | y Static N propagation subexpressions graph coloring (Maps, Sets) arithmetic model
S ___=-- -~ (I\
W analyzer

-~
S

If CompCert successfully compiles a C ol
" down to a PowerPC assembly program asm,

10

CompCert in production : safer code?

CompCert is commercialized by Absint and known to be used internally by:
® Airbus (avionic)
® MTU Friedrichshafen (civil nuclear energy)
® TUM (avionic)

171

CompCert in production : safer code?

CompCert is commercialized by Absint and known to be used internally by:
® Airbus (avionic)
® MTU Friedrichshafen (civil nuclear energy)
® TUM (avionic)

| Why does CompCert interest so much these industries?)

171

CompCert in production : safer code?

CompCert is commercialized by Absint and known to be used internally by:
® Airbus (avionic)
® MTU Friedrichshafen (civil nuclear energy)
® TUM (avionic)

Why does CompCert interest so much these industries?
Paradoxically, not so much to increase trust than to improve performances!

| “With CompCert it is possible to decrease the execution fime |

The standards for certification are extremely stricts for such fields:
optimisations were usually completely ruled out!

171

Verified Compilation

Source Target
language _> compile(p) language
Z, Verified Z,

compller

[P] [compile(p) 1

12

Verified Compilation

Source Target
language _> compile(p) language
Z, Verified Z,

compller

[P] [compile(p) 1

J “correct’

12

Verified Compilation

Source Target
language compile(p Ionguage
< Venfled
compller
[P] [compile(p) 1

J “‘correct” D
o

12

Verified Compilation

Source Target
language compile(p Ionguage
< Venfled

compller

“Refinement of
behaviors”

[P]] [compile(p)]

J “‘correct” D
o

12

Verified Compilation

Source Target
language _> compile(p) language
Z, Verified Z,

compller

“Refinement of
behaviors”

[P]] [compile(p)]

J ‘correct” J ‘correct”

12

Verified Compilation

Source Target
language _> compile(p) language
Z, Verified Z,

compller

“Refinement of
behaviors”

[P]] [compile(p)]

J “‘correct” J “‘correct” .

The compller is written and formally proved correct in a Proof Assistant

12

Verified Compilation

Source Target
language _> compile(p) language
Z, Verified Z,

compller

“Refinement of
behaviors”

[P]] [compile(p)]

13

Verified Compilation

Venfled

compiler

“Refinement of
behaviors”

[P]] [compile(p)]

New languages, new constructions

13

Verified Compilation

%.

“Refinement of
behaviors”

[P]] [compile(p)]

New languages, new constructions
Supporting better/more optimizations

13

Verified Compilation

%.

“Refinement of

behaviors”
[P] g [compile(p) 1

New languages, new constructions New semantics and proof techniques
Supporting better/more optimizations

13

Verified Compilation

%

New languages, new constructions

Supporting better/more optimizations

New semantics and proof fechnigues

Stronger results (security, ...)

13

Verified Compilation

Venfled
compiler

“Refinement of

behaviors”
[P] g [compile(p) 1

New languages, new constructions New semantics and proof techniques

A modular, compositional, and executable semantics for LLVM R

13

Objective-C

@ python

IT

EScala

LLVM Compiler Infrastructure
[Lattner et al.]

< N MIFPS

TECHNOLOGIES

en/|it 1 @
o (inte!

SPARC

PowerPE
/'/ y g

 { //
A W .

\/

w

14

The LLVM IR

LLVM Reference Manudl

table of contents

19

2LIVM

LLVM Home | Documentation»

LLVM Lanc

o Abstra
e |ntrod

o Wel
e |dentif
e HighlL
Mo
Lin
Cal
Vis
DLI
Thr
Rur
Stri
Nol
Glo
Fur
Aliz
IFu
Coi
Natr
Par
Gar
Pre
Pro
Per
Att
Fur
Glo
Op!

0O 0 0O 0 0 0O 0O 0O 0O 0O 0O 0O 0O O O O O O O O O 0o o

Mo
Dat
Tar
Poi
Vol
Me|
Ato
Flo.
Fas
Use
Sou

0O 0 0 0 0o 0o 0o 0o 0o o o

L]
-
<
J
D

Val

X86_mmx Type
Pointer Type
Vector Type

= Label Type

= Token Type
= Metadata Ty,
= Aggregate T

Array Tyy
Structure
Opaque ¢

e Constants

0O 0 0 0o 0o o o

Simple Constan
Complex Const
Global Variable
Undefined Valu
Poison Values

Addresses of B:
Constant Expre

Other Values

o

Inline Assembl¢

= |nline Asm (O

Output c
Input cor
Indirect i
Clobber ¢ |°*
Constrair
Supporte

= Asm templa
= |nline Asm N\
e Metadata
o Metadata Node
= Specialized |

DICompil
DIFile
DIBasicTy
DISubrou
DIDerivec
DICompa
DISubran
DIEnume
DITemplz |e
DITemplz
DINames
DIGlobal
DISubpro
DlLexical .
DlLexical
DlLocatic
DlLocalV:
DIExpres!
DIObjCPr
Dlimportt
DIMacro
DIMacroF

= ‘thaa’ Metac

Semantic
Represen

= ‘tbaa.struc

= ‘poalias’ an
= ‘fpmath’ Mel
= ‘range’ Meta

s ‘gbsolute s

= ‘1lvm.loop.unroll_and_jam’

= ‘1lvm.loop.unroll_and_jam.count’ Metadata
= ‘llvm.loop.unroll_and_jam.disable’ Metadat:

= ‘llvm.loop.unrall and -Ham_anahla’ Matadata

= ‘1lvm.loop
= ‘llvm.loop
= ‘11vm.mem’
= ‘1lvm.mem.
= ‘irr_loop’
= ‘invariant

= ‘type’ Met:

= ‘associate

= ‘prof’ Met:
= branch_
= functior
= VP

Module Flags Me
o Objective-C G
Metadata
o (C type width I
Automatic Linker
ThinLTO Summal
o Module Path §
o Global Value ¢

= Function Si

= Global Vari

= Alias Sumn

= Function Fl
= (Calls
= Refs

= Typeldinfo

= TypeTes

= TypeTes

= TypeCh

= TypeTes

= TypeCh

o Type ID Sumn

Intrinsic Global V

o The ‘llvm.use

o The ‘1lvm.con

o The ‘1lvm.gla

o The ‘1lvm.glg

Instruction Refer:

o Terminator In;

= ‘pet’ Instru

= Syntax:

= QOvervie

= Argume

= Semanti

= Examply

= ‘br’ Instruc

= Syntax:

= QOvervie

= Argume

= Semanti

= Example

= ‘switch’ In

= Syntax:

= Qvervie

= ‘fptosi .. to’ Instru
= Syntax:
= Qverview:

= Arguments:

= ‘uitofp .. to’ Instru

Semantics:
Example:

Syntax:
Overview:
Arguments:
Semantics:
Example:

= ‘sitofp .. to’ Instru
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘ptrtoint .. to’l
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘inttoptr .. to’l
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘bitcast .. to’ Instri
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘addrspacecast .. t«
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
Other Operations
= ‘icmp’ Instruction
= Syntax:
= QOverview:
= Arguments:
= Semantics:
= Example:
= ‘“femp’ Instruction
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:

- \JVTIVITVYY.
= Arguments:
= Semantics:
= Example:
= ‘catchswitch’ Instruction
= Syntax:
= Overview:
= Arguments:
= Semantics:
= Example:
= ‘catchret’ Instruction
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘cleanupret’ Instruction
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘unreachable’ Instruction
= Syntax:
= Qverview:
= Semantics:
Binary Operations
= ‘add’ Instruction
= Syntax:
= Overview:
= Arguments:

The LLVM IR

= ‘yrem’ Instruction

Syntax:
Overview:
Arguments:
Semantics:
Example:

= ‘spem’ Instruction

Syntax:
Overview:
Arguments:
Semantics:
Example:

= ‘frem’ Instruction

Syntax:
Overview:
Arguments:
Semantics:
Example:

Bitwise Binary Operati
= ‘shl’ Instruction

Syntax:
Overview:
Arguments:
Semantics:
Example:

= ‘Ishr’ Instruction

Syntax:

LLVM Refer

table o

= Example:
= ‘fsub’ Instruction
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘mul’ Instruction
= Syntax:
= Overview:
= Arguments:
= Semantics:
= Example:
= ‘“fmul’ Instruction
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Example:
= ‘udiv’ Instruction
= Syntax:
= Overview:
= Arguments:
= Semantics:
= Example:
= ‘sdiv’ Instruction
= Syntax:

s Dvarviow:

Semantics:
Example:

= ‘or’ Instruction

Syntax:
Overview:
Arguments:
Semantics:
Example:

= ‘xor’ Instruction

Syntax:
Overview:
Arguments:
Semantics:
Example:

Vector Operations
= ‘extractelement’ |

Syntax:
Overview:
Arguments:
Semantics:
Example:

= ‘insertelement’ In:

Syntax:
Overview:
Arguments:
Semantics:
Example:

A

Memory Access 2
= ‘alloca’ Instru
= Syntax:

= QOverview:
= Arguments
= Semantics:
= Example:

= ‘load’ Instruct
= Syntax:
= QOverview:
= Arguments
= Semantics:

Examples:

= ‘store’ Instrut

Syntax:
Overview:
Arguments
Semantics:
Example:

= ‘fence’ Instrut

= Syntax:

= QOverview:
= Arguments
= Semantics:

= ‘fptosi .. to’ Instruction

= Syntax:
= Qverview:
= Argumenti
= Semantics
= Example:
= ‘uitofp .. 1
= Syntax:
= Qverview:
= Argumenti
= Semantics
= Example:
= ‘sitofp .. 1
= Syntax:
= Qverview:
= Argumenti
= Semantics
= Example:
= ‘ptrtoint ..
= Syntax:
= Qverview:
= Argument
= Semantics
= Example:
= ‘inttoptr ..
= Syntax:
= Qverview:

e |Intrinsic Functi

o Variable Ar¢
= ‘llvm.va
= Synta;
= Qverv
= Argur
= Semal
= ‘llvm.va
= Synta
= Qveryv
= Argur
= Semal
= ‘1lvm.va
= Synta
= Overy
= Argur
= Semal
o Accurate Ga
= Experime
= ‘llvm.gc
= Synta;
= Qverv
= Argur
= Semal
= ‘llvm.gc
= Syntal

nce Man
onftents

= Syntax:
= QOverview:
= Arguments
= Semantics:
= Example:
= Vector of p
Conversion Oper,
= ‘trunc .. to’
= Syntax:
= Qverview:
= Arguments
= Semantics:
= Example:
= ‘zext .. to’l
= Syntax:
= Qverview:
= Arguments
= Semantics:
= Example:
= ‘sext .. to’l
= Syntax:
= QOverview:
= Arguments
= Semantics:
= Example:
= ‘fptrunc .. t
= Syntax:

= Semantics
= Example:
Other Operatior
= ‘icmp’ Instrus
= Syntax:
= Qverview:
= Argumenti
= Semantics
= Example:
= ‘fcmp’ Instrus
= Syntax:
= Qverview:
= Argumenti
= Semantics
= Example:
= ‘phi’ Instruci
= Syntax:
= Qverview:
= Argument
= Semantics
= Example:
= ‘select’ Inst
= Syntax:
= Qverview:
= Argument
= Semantics

= Semal
= ‘llvm.ad
= Synta;
= Qveryv
= Semal
= ‘1lvm.fr
= Synta
= Qveryv
= Argur
= Semal
= ‘llvm.lo
Intrinsics
= Synta;
= Qveryv
= Argur
= Semal
= ‘llvm.re
Intrinsics
= Synta;
= Qverv
= Semal
= ‘llvm.st
= Synta;
= Qveryv
= Semal

B "1lum c¥+

= ‘llvm.experimental.vector.red: .
Intrinsic
= Syniy ‘11vm.readcyclecounter’ Intrinsic
"= Owe = Syntax:
" Arg = Overview:
= ‘1llvm. = Semantics:
Intrins ‘11vm.clear_cache’ Intrinsic
= Syn = Syntax:
» Ove = Overview:
= Arg = Semantics:
= ‘llvm. ‘11lvm.instrprof.increment’ Intrinsic
Intrins = Syntax:
= Syn = Overview:
= Ove = Arguments:
= Arg = Semantics:
= ‘llvm. ‘11lvm.instrprof.increment.step’ Intr
Intrins = Syntax:
= Syn = Qverview:
= Ove = Arguments:
= Arg = Semantics:
= ‘1lvm. ‘11lvm.instrprof.value.profile’ Intri
Intrins = Syntax:
= Syn = Overview:
s Ove = Arguments:
= Arg = Semantics:
§ ‘11vm.thread.pointer’ Intrinsic

Intrins
= Syn
= Ove
= Arg
Half Preci
= ‘1lvm.
= Syn
= Ove
= Arg
= Sen
= Exa
= ‘1lvm.
= Syn
= Ove
= Arg
= Sen
= Exa
Debuggel
Exception
Trampolil
= ‘1lvm.
= Syn
s Ove

= Syntax:
= Qverview:
= Semantics:

Standard C Library Intrinsics

‘11vm.memcpy’ Intrinsic
= Syntax:

= Qverview:

= Arguments:

= Semantics:
‘11vm.memmove’ Intrinsic
= Syntax:

= QOverview:

= Arguments:

= Semantics:
‘1lvm.memset.*’ Intrinsics
= Syntax:

= QOverview:

= Arguments:

= Semantics:
‘1lvm.sqrt.*' Intrinsic
= Syntax:

= Qverview:

= Arguments:

= Semantics:
‘11vm.powi.*’ Intrinsic
= Syntax:

= Qverview:

= Arguments:

= Semantics:
‘11lvm.sin.*’ Intrinsic
= Syntax:

= Qverview:

= Arguments:

= Semantics:
‘11vm.cos.*’ Intrinsic
= Syntax:

= QOverview:

= Arguments:

s Semantices:

‘11lvm.experimental.vector.reduce.and.*’

l ‘,,‘

r.reduce.or.*’

r.reduce.xor.*’

'11lvm. load.relative’ Intrinsic
= Syntax:
= QOverview:
‘11lvm.sideeffect’ Intrinsic
= Syntax:
= Qverview:
= Arguments:
= Semantics:
Stack Map Intrinsics
Element Wise Atomic Memory Intrinsics
= ‘llvm.memcpy.element.unordered.atomic’
Intrinsic
= Syntax:
= QOverview:
= Arguments:
= Semantics:
= Lowering:
= ‘llvm.memmove.element.unordered.atomic’

Intrinsic
= Syntax:
= QOverview:
= Arguments:
= Semantics:
= Lowering:

= ‘llvm.memset.element.unordered.atomic’
Intrinsic
= Syntax:
= Qverview:
= Arguments:
= Semantics:
= Lowering:

Abstract

This document is a reference manual for the LLVM assembly
language. LLVM is a Static Single Assignment (SSA) based
representation that provides type safety, low-level opera-
tions, flexibility, and the capability of representing ‘all’

trinsic

The Vellvm Project

Operational style

Monadic, denotational

G~ o 4-.

Project in collaboration with the
University of Pennsylvanio

16

The Vellvm Project

Monadic, denotational

G~ o 4-.

Project in collaboration with the
University of Pennsylvania

16

The Vellvm Project

Project in collaboration with the
University of Pennsylvania

16

(Operational) Semantics of an Imperative Language

Moving to the black board

