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Or How | Learned to Stop Worrying...

INn 1956, Nikita Khrushcheyv is addressing western diplomats in Moscow:

“"We will bury you”

It appears that the original Russian sentence something closer to
“"We shall outlive you”

Khrushchev had a buggy franslator!
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Traduttore, traditore’
A nightmare scenario...

our Algorithm satisfies the specification
Betterl Our IMPlementation satisfies the SpeCIfication

But the compi\er has changed the meaning of my program

The EXeCUTable code does Not satisfy the specifico’rion

" ‘Natural \ongucges are hard. But when it comes to progrommmg .,
languages, can we guarantee that our franslators won't betray us?|

' The use of this quote in this context is stolen from Xavier Leroy’s excellent course at College de France. It’s available online!
/



Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce
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Add Some Tests?

A compller is a program, and we want It to behave:
can't we Just test themce
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It’s hard work, but it can be done!

Finding and Understanding Bugs in C Compilers

Xuejun Yang  Yang Chen  Eric Eide  John Regehr

o o _

But C is no ML: a syntactically correct program is likely no Cl|
Undefined behaviours: null pointer dereference, array access out-of-bound, etc...
Your random generator must be paired with complex static analyses
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It’'s hard work, but it’s worth it!

Finding and Understanding Bugs in C Compilers

Xuejun Yang  Yang Chen  Eric Eide  John Regehr

“Every compner we ’res’red WQS found ’ro crash - ;
ond also to silently generafte wrong code when presented with valid input.”

Here enters the hero of our story: the Verifled compi\er



Pre-history

CORRECTNESS OF A COMPILER FOR
ARITHMETIC EXPRESSIONS®

JOHN McCARTHY and JAMES PAINTER
1967

1 Introduction

This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof are
all intended to serve as prototypes for the more complicated task of proving the
correctness of usable compilers. The ultimate goal, as outlined in references
1], [2], [3] and [4] is to make it possible to use a computer to check proofs that
compilers are correct.
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Pre-history

Proving Compiler Correctness 1972
In a Mechanized Logic

R. Milner and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGoL-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented only in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

9
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CompCert (2009-) : a Verified C99 Optimising Compiler
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CompCert in production : safer code?

CompCert is commercialized by Absint and known to be used internally by:
® Airbus (avionic)
® MTU Friedrichshafen (civil nuclear energy)
® TUM (avionic)
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CompCert in production : safer code?

CompCert is commercialized by Absint and known to be used internally by:
® Airbus (avionic)
® MTU Friedrichshafen (civil nuclear energy)
® TUM (avionic)

Why does CompCert interest so much these industries?
Paradoxically, not so much to increase trust than to improve performances!

| “With CompCert it is possible to decrease the execution fime |

The standards for certification are extremely stricts for such fields:
optimisations were usually completely ruled out!

171
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Verified Compilation

Source Target
language _> compile(p) language
Z, Verified Z,

compller

“Refinement of
behaviors”

[P] ] [ compile(p) ]

J “‘correct” J “‘correct” .

The compller is written and formally proved correct in a Proof Assistant
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Verified Compilation

%

New languages, new constructions

Supporting better/more optimizations

New semantics and proof fechnigues

Stronger results (security, ...)
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Verified Compilation

Venfled
compiler

“Refinement of

behaviors”
[P ] g [ compile(p) 1

New languages, new constructions New semantics and proof techniques

A modular, compositional, and executable semantics for LLVM R
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The LLVM IR

LLVM Reference Manudl

table of contents
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= Semantics:
‘11lvm.sin.*’ Intrinsic
= Syntax:

= Qverview:

=  Arguments:

= Semantics:
‘11vm.cos.*’ Intrinsic
= Syntax:

= QOverview:

=  Arguments:

s Semantices:

‘11lvm.experimental.vector.reduce.and.*’

l ‘,,‘

r.reduce.or.*’

r.reduce.xor.*’

'11lvm. load.relative’ Intrinsic
= Syntax:
= QOverview:
‘11lvm.sideeffect’ Intrinsic
= Syntax:
= Qverview:
=  Arguments:
= Semantics:
Stack Map Intrinsics
Element Wise Atomic Memory Intrinsics
= ‘llvm.memcpy.element.unordered.atomic’
Intrinsic
= Syntax:
= QOverview:
=  Arguments:
= Semantics:
= Lowering:
= ‘llvm.memmove.element.unordered.atomic’

Intrinsic
= Syntax:
= QOverview:
=  Arguments:
= Semantics:
= Lowering:

= ‘llvm.memset.element.unordered.atomic’
Intrinsic
=  Syntax:
= Qverview:
=  Arguments:
=  Semantics:
= Lowering:

Abstract

This document is a reference manual for the LLVM assembly
language. LLVM is a Static Single Assignment (SSA) based
representation that provides type safety, low-level opera-
tions, flexibility, and the capability of representing ‘all’

trinsic
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