
Compilation and Program Analysis (#11) :
Parallelism

Master 1, ENS de Lyon et Dpt Info, Lyon1

2024-2025

Generalities on Parallelism

1 Generalities on Parallelism

2 CCS: A Calculus for Communicating Systems

3 An introduction to Futures

4 Adding parallelism to Mini-while

5 A brief introduction to weak memory models

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 2 / 45 ↠

Generalities on Parallelism

Why parallelism?

1 To go faster
Massive amount of computation, sometimes massively parallel,
sometimes with complex parallelisation patterns

2 To handle large amount of data: big data-bases, consistency
problems, synchronisation is crucial

3 To handle problems that are by nature parallel, from system
interruption to online applications with several users/distributed
data or decisions

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 3 / 45 ↠

Generalities on Parallelism

Different forms of parallelism
Shared memory
principle: processes can write and read data in common memory
spaces example: threads in most languages generally you need a
form of locking to be able to write things correctly or something similar
(can be basic mutex or more complex locking like Java serialize)
Message passing
principle: communication between thread by sending/receiving
messages several communication patterns exist
synchronous/asynchronous/different send and receive primitives, etc.
High-level programming models
Can mix shared data and message passing or simply provide a
high-level view on one of them, generally provides richer and safer
way to compose computations
Example: parallel skeletons like map-reduce, actors, ...
Parallel, concurrent, or distributed?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 4 / 45 ↠

CCS: A Calculus for Communicating Systems

1 Generalities on Parallelism

2 CCS: A Calculus for Communicating Systems

3 An introduction to Futures

4 Adding parallelism to Mini-while

5 A brief introduction to weak memory models

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 5 / 45 ↠

An introduction to Futures

See on board:

CCS: syntax of processes

Operational Semantics as a Labelled Transition System

On the equivalence of processes: bisimilarity
(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 6 / 45 ↠

An introduction to Futures

1 Generalities on Parallelism

2 CCS: A Calculus for Communicating Systems

3 An introduction to Futures
Principles
A case study from the literature: λ-calculus with futures

4 Adding parallelism to Mini-while

5 A brief introduction to weak memory models

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 6 / 45 ↠

An introduction to Futures Principles

3 An introduction to Futures
Principles
A case study from the literature: λ-calculus with futures

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 7 / 45 ↠

B

Requests and replies

1.  ……….
2.  ……
3.  ……
4.  …….
5.  ……..

1.  ……….
2.  ……
3.  Send

message to B
4.  …….
5.  Get the result

message

1

A

B

Requests and replies

1.  ……….
2.  ……
3.  ……
4.  …….
5.  ……..

1.  ……….
2.  ……
3.  Send

message to B
4.  …….
5.  Get the result

Here is the result

message

2

A

An introduction to Futures A case study from the literature: λ-calculus with futures

3 An introduction to Futures
Principles
A case study from the literature: λ-calculus with futures

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 8 / 45 ↠

An introduction to Futures A case study from the literature: λ-calculus with futures

A simple λ-calculus with futures: Syntax
Terms: λ-calculus + futures:

e ::= (e e′) | λx. e | x | get e | f | async(e)

f appears during execution.
v is a value (fully evaluated term), i.e. v ::= f | λx. e.
We could add other values, e.g. int.
A configuration consists of

futures: fut(f) (unresolved) or fut(f v) (resolved with a value)
and tasks (task(f e)).

References:

A more complete lambda calculus with futures can be found in: Joachim
Niehren, Jan Schwinghammer, Gert Smolka. A Concurrent Lambda
Calculus with Futures. Theoretical Computer Science, 2006,

simple lambda calculus with futures has been used in
Fernandez-Reyes, K., Clarke, D., Castegren, E., Vo, H-P. Forward to a
Promising Future. Coordination 2018

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 9 / 45 ↠

An introduction to Futures A case study from the literature: λ-calculus with futures

A simple λ-calculus with futures: Semantics

RED-LAMBDA

task(g E[(λx.e) v])→ task(g E[e{v/x}])

RED-ASYNC

fresh f

task(g E[async(e)])→
fut(f) task(f e) task(g E[f])

CONTEXT

cn→ cn′

cn cn′′ → cn′ cn′′

END-TASK

fut(f) task(f v)→ fut(f v)

RED-GET

task(f E[getf])fut(f v)→
task(f E[v]) fut(f v)

Note: configurations identified modulo reordering of tasks / futures,
What is E?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 10 / 45 ↠

An introduction to Futures A case study from the literature: λ-calculus with futures

Evaluation contexts
Evaluation contexts (sometimes called reduction contexts) used to focus on part of the
configuration and reduce it. Compared to context rules they are more versatile: you can
better choose what is in/out of the context.

For lambda-calculus with futures:

E ::= E e | v E | • | get E

This ensures call-by-value.

E[e] = E{• ← e}

<latexit sha1_base64="zzN30RC6IkBz3+lAUr5lX7+9EEY=">AAACGXicbVDLSsNAFJ3UV62vqEs3g0VoNiERRZdFNy4r9AVtKZPJpB06eTAzkaah/Qw3/oobF4q41JV/47QNUlsPDJx7zr3cuceJGBXSsr613Nr6xuZWfruws7u3f6AfHtVFGHNMajhkIW86SBBGA1KTVDLSjDhBvsNIwxncTv3GA+GChkFVJhHp+KgXUI9iJJXU1a1Sm6luF8GhCYfGpPRbJ2ayWI7MkTGpGkZXL1qmNQNcJXZGiiBDpat/tt0Qxz4JJGZIiJZtRbKTIi4pZmRcaMeCRAgPUI+0FA2QT0QnnV02hmdKcaEXcvUCCWfq4kSKfCES31GdPpJ9sexNxf+8Viy9605KgyiWJMDzRV7MoAzhNCboUk6wZIkiCHOq/gpxH3GEpQqzoEKwl09eJfVz0740rfuLYvkmiyMPTsApKAEbXIEyuAMVUAMYPIJn8AretCftRXvXPuatOS2bOQZ/oH39AGJnngk=</latexit>

(�x.x) ((�y.y) ((�z.z) T))
Reduction context

Reduced
term

E = (λx.x) ((λy.y) (•)) and RED-LAMBDA can be applied.
(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 11 / 45 ↠

An introduction to Futures A case study from the literature: λ-calculus with futures

Example of lambda-fut evaluation

What is the initial configuration?
A task containing the program to be evaluated: task(f e) where e is
the program and f is a future that will never be used.

What is the behaviour of
(
λx. get(async((λy. y + y) x))

)
3?

Suppose we have a print operation in the language of the form
print “A”;e. Write a simple program that can print either first
“A” then “B” or first “B” then “A”. add get to the program so
that only one output is possible.
Hint: Define a term eA of the form eA = print “A”; 1 and call it
asynchronously.
Let is a classical construct, easy ro define in lambda calculus.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 12 / 45 ↠

Adding parallelism to Mini-while

1 Generalities on Parallelism

2 CCS: A Calculus for Communicating Systems

3 An introduction to Futures

4 Adding parallelism to Mini-while
Shared memory
Asynchronous function calls and futures
Typing futures in mini-while
Type safety?

5 A brief introduction to weak memory models

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 13 / 45 ↠

Adding parallelism to Mini-while Shared memory

4 Adding parallelism to Mini-while
Shared memory
Asynchronous function calls and futures
Typing futures in mini-while
Type safety?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 14 / 45 ↠

Adding parallelism to Mini-while Shared memory

Mini-While Syntax (OLD) 1/2

Expressions:
e ::= c | e+ e | e× e | ...

| x variable

Statements:

S(Smt) ::= x := expr assign
| x := f(e1) simple function call
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 15 / 45 ↠

Adding parallelism to Mini-while Shared memory

Mini-While Syntax (OLD) 2/2

Programs with function definitions and global variables

Prog ::= D FunDef Body Program
Body ::= D;S Function/main body

D ::= var x : τ |D;D Variable declaration
FunDef ::= τ f(x1 : τ1) Body; return e

| FunDef FunDef Function def

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 16 / 45 ↠

Adding parallelism to Mini-while Shared memory

Structural Op. Semantics (SOS = small step) for
mini-while (OLD – no fun)

(x := a, σ)→ σ[x 7→ V al(a, σ)]

(skip, σ)→ σ

(S1, σ)→ σ′(
(S1;S2), σ

)
→ (S2, σ′)

(S1, σ)→ (S′
1, σ

′)(
(S1;S2), σ

)
→ (S′

1;S2, σ′)

V al(b, σ) = tt

(if b then S1 else S2, σ)→ (S1, σ)

V al(b, σ) = ff

(if b then S1 else S2, σ)→ (S2, σ)

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 17 / 45 ↠

Adding parallelism to Mini-while Shared memory

Mini-while + shared memory

Add parallel composition to statements

S ::= ...|S||S′

And 2 reduction rules for parallelism:

PARALLEL1
(S1, σ)→ (S′

1, σ
′)

(S1||S2, σ)→ (S′
1||S2, σ

′)

PARALLEL2
(S2, σ)→ (S′

2, σ
′)

(S1||S2, σ)→ (S1||S′
2, σ

′)

And 2 special cases to garbage collect finished threads:

ENDTASK1

(skip||S2, σ)→ (S2, σ
′)

ENDTASK2

(S1||skip, σ)→ (S1, σ
′)

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 18 / 45 ↠

Adding parallelism to Mini-while Shared memory

Example mini-while shared memory

Compute the semantics of:

x := 0; (x := 2||while x < 3 do x := x+ 1 done)

Note: || is quite an impractical construct for programming. One
typically prefer a spawn statement: but note that such a statement
can create an unbounded amount of tasks!

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 19 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

4 Adding parallelism to Mini-while
Shared memory
Asynchronous function calls and futures
Typing futures in mini-while
Type safety?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 20 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

OLD SOS with functions (1/2)

Runtime configuration
(Optional-Statement, Call-Stack, Stack, Store):

cn ::= (S,Ctx,Σ, sto) | (Ctx,Σ, sto)

(x := e, Ctx,Σ, sto)→ (Ctx,Σ, sto[Σ(x) 7→ V al(e, sto ◦ Σ)])
(S1, Ctx,Σ, sto)→ (Ctx,Σ′, sto′)(

(S1;S2), Ctx,Σ, sto
)
→ (S2, Ctx,Σ′, sto′)

(S1, Ctx,Σ, sto)→ (S′
1, Ctx,Σ′, sto′)(

(S1;S2), Ctx,Σ, sto
)
→ (S′

1;S2, Ctx,Σ′, sto′)

+ rules for if, skip, and while

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 21 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

OLD SOS with functions (2/2)

CALL

bind3(f, e1..en,Σ, sto) = (S′,Σ′, sto′)

(x := f(e1);S,Ctx,Σ, sto) → (S′, (Σ, x := R(f);S) :: Ctx,Σ′, sto′)

Ctx is a list of (Stack, Stm). x := f(e1);S is the whole current statement

(imposed by the syntax). R(f) is a marker that remembers the name of
the function called
bind3(f, e1,Σ, sto) = (Sf ,Σ

′, sto[ℓ1 7→ v1]) if body(f) = Df ;Sf ,
params(f) = [x1], V ars(Df) = {y1..yk}
ℓ1 fresh, ℓ′1..ℓ′k fresh V al(e1, sto ◦ Σ) = v1,

Σ′ = Σ[x1 7→ ℓ1, y1 7→ ℓ′1..yk 7→ ℓ′k].

v = V al(ret(f), sto ◦ Σ′)

((Σ, x := R(f);S) :: Ctx,Σ′, sto)→ (S,Ctx,Σ, sto[Σ(x) 7→ v])

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 22 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Futures: syntax and principles

Statements:

S(Smt) ::= x := expr assign
| x := f(e1) simple function call
| x := Async(f(e1)) Asynchronous function call
| x := get(e) future access (synchronisation)
| skip do nothing
| S1;S2 sequence
| if b then S1 else S2 test
| while b do S done loop

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 23 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Example (informally)

int f (int x) (

int z;

z:=x+x

) return z

(

int x,y;

fut<int> t;

t:=Async(f(3));

y:=f(4);

x:=get(t)

)

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 24 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Design choice: no global state

We have the choice between
1 Having a global state and allow race-condition between tasks.

Versatile and looks like C threads. Drawback: data-races.
2 Giving up on the global state to recover a more predictable

semantics: no race between two tasks writing to the same
memory.

The latter corresponds to MiniC: we have no global variable.
We specify the semantics for the second solution. To implement the
first solution, a global memory should be added to the configuration.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 25 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Future semantics for mini-while (1/3)

Syntax: F , G range over future identifiers. Values (v) can be
future identifiers.

Configurations:

cn ::= (S,Ctx,Σ, sto)F | fut(F, v) | cn cn′

Configurations are identified modulo reordering of tasks.

The sequential reduction is lifted to our pool of thread
straightforwardly:

(S,Ctx,Σ, sto)→ (S′, Ctx′,Σ′, sto′)

(S,Ctx,Σ, sto)F cn→ (S′, Ctx′,Σ′, sto′)F cn

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 26 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Future semantics for mini-while (2/3)

A naive solution for asynchronous function call:

ASYNC-CALL (BAD)

bind3(f, e1,Σ, sto) = (S′,Σ′, sto′) G fresh future

((x := Async(f(e1));S), Ctx,Σ, sto)F cn→
(x := G;S,Ctx,Σ, sto)F (S′, ∅,Σ′, sto′)G cn

Problem: we have lost the return expression that was somehow
remembered by R(f) in the synchronous call. We do not know what
to fill the future G with.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 27 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Future semantics for mini-while (3/3)

A possible solution: we store the data in the call-stack:
Ctx is hence a list of (Stack, Stm), possibly with return(e) as the last
element of the list.

ASYNC-CALL

bind3(f, e1,Σ, sto) = (S′,Σ′, sto′) G fresh future

((x := Async(f(e1));S), Ctx,Σ, sto)F cn →
((x := G;S), Ctx,Σ, sto)F (S′, [return(ret(f))],Σ′, sto′)G cn

End of function execution and future access:

FUT-RESOLVE

On board

On board
→ fut(F, v) cn

GET

On board

On board

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 28 / 45 ↠

Adding parallelism to Mini-while Asynchronous function calls and futures

Example (semantics)

use the semantics to evaluate the previous example

int f (int x) (

int z;

z:=x+x

) return z

(

int x,y;

fut<int> t;

t:=Async(f(3));

y:=f(4);

x:=get(t)

)

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 29 / 45 ↠

Adding parallelism to Mini-while Typing futures in mini-while

4 Adding parallelism to Mini-while
Shared memory
Asynchronous function calls and futures
Typing futures in mini-while
Type safety?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 30 / 45 ↠

Adding parallelism to Mini-while Typing futures in mini-while

Base Type System (OLD)
From declarations we infer Γ : V ar → Basetype with a judgment →d. From
program we infer a function table Γf : FuncName → (τ1..τn → τ) with a
judgment →f Then a typing judgment for expressions is
Γ ⊢ e : τ ∈ Basetype. Typing of statements has the form : Γ,Γf ⊢ S.

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int Γ ⊢ x : Γ(x)

Γ,Γf ⊢ S1 Γ,Γf ⊢ S2

Γ,Γf ⊢ S1;S2

Γ ⊢ x : τ Γ ⊢ e : τ

Γ,Γf ⊢ x := e

Γ ⊢ b : bool Γ,Γf ⊢ S1 Γ,Γf ⊢ S2

Γ,Γf ⊢ if b then S1 else S2

Γ ⊢ b : bool Γ,Γf ⊢ S

Γ,Γf ⊢ while b do S done

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 31 / 45 ↠

Adding parallelism to Mini-while Typing futures in mini-while

Type function calls and typing program

To type a program we type all method bodies:

Fundef →f Γf

∀(τ f(x1 : τ1) Df ;Sf ; return e ∈ Fundef).

Γg + Γl ⊢ e : τ ∧ Γl,Γf ⊢ Sf with x1 : τ1;Df →d Γl

Dm →d Γm Γm,Γf ⊢ S

Fundef Dm;S

CALL

Γf (f) = τ1 → τ Γ ⊢ e1 : τ1 Γ ⊢ x : τ

Γ,Γf ⊢ x := f(e1)

+ merges and overwrite variable declarations, for overriding
variables (local over global).
Note: recall there is no global variable in our current setting.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 32 / 45 ↠

Adding parallelism to Mini-while Typing futures in mini-while

Adding future types

Previous type syntax:
τ ::= int | bool

New types can be futures:

τ ::= int | bool | fut < τ >

Future types can be declared: fut<int> x,y

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 33 / 45 ↠

Adding parallelism to Mini-while Typing futures in mini-while

On board: try to design rules for typing async and get.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 34 / 45 ↠

Adding parallelism to Mini-while Typing futures in mini-while

Typing rules for futures

On board

ASYNC

.....

Γ,Γf ⊢ x := Async(f(e1))

GET

.......

Γ,Γf ⊢ x := get(e)

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 35 / 45 ↠

Adding parallelism to Mini-while Type safety?

4 Adding parallelism to Mini-while
Shared memory
Asynchronous function calls and futures
Typing futures in mini-while
Type safety?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 36 / 45 ↠

Adding parallelism to Mini-while Type safety?

Preservation
Definition:
consider a well typed program Prog, a configuration cn reachable by
executing Prog, we have

cn→ cn′ ∧ Γf ,Γfut ⊢ cn =⇒ ∃Γ′
fut, Γf ,Γ

′
fut ⊢ cn′

What is a well-typed configuration? i.e. define the assertion
Γf ,Γfut ⊢ cn What is Γfut?

Definition (Configuration typing (very OLD))
Γ ⊢ (S, σ) ⇐⇒ (Γ ⊢ S ∧ ∀x. ∅ ⊢ σ(x) : τ ⇐⇒ Γ(x) = τ)

Now we have:

cn ::= (S,Ctx,Σ, sto)F | fut(F, v) | cn cn′

With Ctx of the form (Σ, S) :: .. :: (Σn, Sn) :: return(e) (no return(e)

for the main task).
(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 37 / 45 ↠

Adding parallelism to Mini-while Type safety?

Well-typed configuration
Suppose Γ,Γf ⊢ (S, σ) defined similarly to before (Γf added). We can define:

Γ,Γf ⊢ (S, sto ◦ Σ) Ctx = (Σ0, S0) :: .. :: (Σn, Sn) :: return(e)

∀i ∈ [1..n].Γi,Γf ⊢ (Si, sto ◦ Σi) Γn ⊢ e : Γfut(F)

Γf ,Γfut ⊢ (S,Ctx,Σ, sto)F

∅ ⊢ v : Γfut(F)

Γf ,Γfut ⊢ fut(F, v)

Γf ,Γfut ⊢ cn Γf ,Γfut ⊢ cn′

Γf ,Γfut ⊢ cn cn′

Problem (same as with functions): Γ, Γi are undefined. It is the
environment that types the considered statement, i.e. the typing environment
of the function that contains the considered statement. We can for example
annotate configurations with the name of the function that is currently
evaluated and recover the typing environment (existence of a typing
environment is sufficient).

What’s a proof scheme to establish preservation?

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 38 / 45 ↠

Adding parallelism to Mini-while Type safety?

On the topic of progress

State a progress property Note: this entails absence of deadlock
Can we deadlock? Can we livelock? What if we have globals?
Alternatively, we can state a weaker progress property:

Any well-typed configuration that cannot progress is either
a final configuration or exhibits a cycle of dependencies be-
tween futures: there is a list of future identifiers such that
the task responsible for computing F1 is performing a get on
future F2, ... the task responsible for computing Fn is per-
forming a get on future F0.

In other words: typing rules out all kinds of stuck configurations,
except cycles of futures.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 39 / 45 ↠

A brief introduction to weak memory models

1 Generalities on Parallelism

2 CCS: A Calculus for Communicating Systems

3 An introduction to Futures

4 Adding parallelism to Mini-while

5 A brief introduction to weak memory models

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 40 / 45 ↠

A brief introduction to weak memory models

Sequential consistency

Question: What are the possible results for the pair (r1, r2) from an
initial state where (x = y = 0)?

// Thread 1

x = 1

r1 = y

||
// Thread 2

y = 1

r2 = x

A sequentially consistent memory model answers as one would
expect: the valid outputs are (0, 1), (1, 0), or (1, 1).
Unfortunately, some memory models allow more behaviors: they are
qualified of "weak"!

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 41 / 45 ↠

A brief introduction to weak memory models

Sequential consistency

Question: What are the possible results for the pair (r1, r2) from an
initial state where (x = y = 0)?

// Thread 1

x = 1

r1 = y

||
// Thread 2

y = 1

r2 = x

A sequentially consistent memory model answers as one would
expect: the valid outputs are (0, 1), (1, 0), or (1, 1).

Unfortunately, some memory models allow more behaviors: they are
qualified of "weak"!

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 41 / 45 ↠

A brief introduction to weak memory models

Sequential consistency

Question: What are the possible results for the pair (r1, r2) from an
initial state where (x = y = 0)?

// Thread 1

x = 1

r1 = y

||
// Thread 2

y = 1

r2 = x

A sequentially consistent memory model answers as one would
expect: the valid outputs are (0, 1), (1, 0), or (1, 1).
Unfortunately, some memory models allow more behaviors: they are
qualified of "weak"!

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 41 / 45 ↠

A brief introduction to weak memory models

Total Store Ordering (TSO) 1/2

Except real memories are more complex, and abstractions have
(sometimes) a cost!1

Writing to the shared memory is costly, an architecture such as x86
can’t afford it. What does it mean for our memory model?

1Image taken from "Relaxed-Memory Concurrency and Verified Compilation".

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 42 / 45 ↠

A brief introduction to weak memory models

Total Store Ordering (TSO) 2/2

// Thread 1

x = 1

r1 = y

||
// Thread 2

y = 1

r2 = x

Under a TSO model (running this example on an x86 processor for
instance):

we can observe (0, 0) in the previous litmus test!

but from a thread-local perspective, instructions appear in order.

synchronization instructions: fence flushes the buffer.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 43 / 45 ↠

A brief introduction to weak memory models

Beyond TSO: ARM, RiscV,...

These models allow some intra-thread reorderings: for instance, two
consecutive stores to different locations can be reordered.2

Considering again initially a = b = 0:

On an ARM architecture, (1, 0) is a possible outcome!

2Picture taken from Nicolas Chappe’s PhD manuscript.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 44 / 45 ↠

A brief introduction to weak memory models

But what about programming languages?

They could chose to be SC for ease of programming... But then the
compiler will have to insert enough fences to prevent weak behaviors
on the target architecture.
A very complex design point: C/C++, Java, or OCaml5 for instance all
three land onto different compromises.
And compiler’s intermediate representations have the toughest job of
all: they must reasonably encapsulate source languages memory
models, while being ready to efficiently compile to all architectures.
Modern research pieces to capture these models formally:

The design of "A Promising Semantics for Relaxed-Memory
Concurrency" (Kang et al.).

At LIP, Nicolas Chappe’s PhD defended last month on modelling
llvm IR with threads.

(M1 - Lyon1 & ENSL) CAP (#11): Parallelism 2024-2025 ↞ 45 / 45 ↠

	Generalities on Parallelism
	CCS: A Calculus for Communicating Systems
	An introduction to Futures
	Adding parallelism to Mini-while
	A brief introduction to weak memory models

