
CAP, ENSL, 2024/2025

Exercises (TD)
Compilation and Program Analysis (CAP)

1 Code production and register allocation

Consider the expression E = (n ∗ (n + 1)) + (2 ∗ n). We assume that we have:
• A multiplication instruction mul t1, t2, t3 that computes t1 := t2*t3.
• An “immediate load” instruction li t1, 4.
• A notation [n] for the stack slot in which n is stored.

Question #1
Generate a 3 address-code for E with temporaries using the ld instruction to load n. Do it as
blindly as possible (no temporary recycling).

Question #2
Draw the liveness intervals without applying liveness analysis. How many registers are
sufficient to compute this expression?

Question #3
Draw the interference graph (nodes are variables, edges are liveness conflicts).

Question #4
Color this graph with three colors using the algorithm seen in the course.

Question #5
Give a register allocation with K = 2 registers using the iterative register allocation algorithm
seen in course.

Page 1 on 14

TD CAP - 2024-25

2 Program Slicing

Let us now consider the following scenario: through testing, we have identified a variable taking
an incorrect value. We want to inspect only the part of the program that might influence this
variable: such a part of the program is called a “slice”. In this exercise, we will design an
algorithm to statically compute the slice of an SSA program.

In order to compute the slice with respect to a given variable v, we need the dependencies of
v. We consider both direct (i.e. non-transitive) dependencies, and transitive dependencies. We
assume we can take the transitive closure of direct dependencies (by denoting it with a star ∗).

2.1 Data Dependencies

Let us consider a first notion of dependencies.

Definition 1 (Direct data dependencies) A variable v depends directly on a variable u in a program
P if P contains an instruction that reads u and defines v, e.g. v := u + 1.

i n t x = 4 2 ;
i n t y = 3 ;
i n t z = 2 ;
while (z <= 100) {

i f (y > 10) {
x = x + 1 ;
y = y / 2 ;

} e lse {
x = x − 1 ;
z = z * y ;

}
}
return x

Figure 1: Program 1 Figure 2: Program 1 in SSA form

Question #1
Give the direct data dependencies of all variables in the SSA representation of Program 1
(given on Figure 2).

Question #2
What are all the variables that influence the value of y1 in Program 1, according to the direct
data dependencies computed in the previous question?

Question #3
Give an algorithm DD(P) computing direct data dependencies in an SSA program P as a
dictionary.

Page 2 on 14

TD CAP - 2024-25

Question #4
Give an algorithm DD∗(P, v) computing transitive data dependencies of a variable v in an
SSA program P. You can use the transitive closure operation.

Question #5
Remove all the instructions of Program 1 on which y1 has no transitive data dependencies.
Does this slice captures every instruction that might influence the value of y1? What is
missing?

2.2 Control Dependencies

We now consider a new kind of dependencies, to take into account what was missing with the
previous notion.

Definition 2 (Direct control dependencies) A variable u is a direct control dependency of a variable
v in a program P if u is used in the predicate of a branch of P that determines a definition of v

E.g. in “if u > 0 then v = 0 else u = 0”, u is a direct control dependency of v. Be careful with
how phi-nodes are treated.

Question #6
Give the direct control dependencies of all variables in the SSA representation of Program 1
(given on Figure 2).

Question #7
Compute the slice of Program 1 with respect to y1 using both (transitive) data and control
dependencies.

Question #8
We now assume to have an algorithm CD(P) computing the direct control dependencies in
an SSA program P as a dictionary. Write an algorithm slice(P, v) which slices the program P
with respect to the variable v using both data and control dependencies.

3 If-conversion and Predicated Instructions

If-conversion is a transformation of the CFG which converts control dependencies (conditional
jumps) into data dependencies. It is particularly useful for loop bodies, where performance is
critical.

Below is an example of if-conversion from the program on the left-hand side, with a branch,
to the program on the right-hand side, without branches, but a dependency on b instead.

For this purpose, we consider predicated instructions: such instructions can have a boolean
guard (b below) indicating if the instruction should be executed or not.

For instance in the program below on the right, we first put the boolean value of x < y in the
b register using the LT (less than) instruction. Then (b) LI res 42 loads the immediate 42 in the
temporary res only if b contains 1, the value representing “true”. Such instructions are available
in many architecture, such as X86.

In the following, we assume all instructions can be predicated by a register or temporary.

Page 3 on 14

TD CAP - 2024-25

In the rest of this section, we only consider pieces of control flow graphs which are not in
SSA form.

We note pred(B) and succ(B) the immediate predecessors and successors of B. We note
cond(B) the condition of the jump at the end of B, brtrue(B) (resp br f alse(B)) the branches if the
condition is true (resp false).

For a given node B, we note predicate(B) a logical expression that predicates its execution
given by a function predicate. For instance in the program above, predicate(else) = x < y.

Question #1
We first consider the following program:

Give predicate for each basic bloc and write the if-converted code.

Page 4 on 14

TD CAP - 2024-25

3.1 Tree programs

We now consider a first class of CFG: trees with single entry, single output, and outdegree 2 for
any other block, noted Tree1. Let B0, . . . , Bn, E be some basic blocks such that the Bi form a tree
and all leaves lead to E. Here is an example:

Question #2
In which cases can such program appear ? Give an example WHILE program that would
result in such a CFG.

Question #3
Given a program P = B0, . . . , Bn, E in Tree1:

(a) What is predicate(E) ?

(b) How to compute predicate(Bi) for any Bi for a program in Tree1 ? Give an algorithm and
justify it. HINT: Proceed by induction on the tree.

Question #4
To emit linear code that contains all blocks, we must order them appropriately. Let us note
sortBlock(P) the list of blocks in such order.

What is a sufficient condition on the list of blocks for the resulting linear code to be correct
after if-conversion ?

Question #5
Consider we are given the predicate and sortBlocks functions from the last two questions. We
also provide two utilities: emit(L) takes a list of (potentially predicated) instructions L and

Page 5 on 14

TD CAP - 2024-25

emits them. bool2instr(b,e) turns a boolean expression e (such as a predicate) into a list
of instructions and assigns it to the temporary b. Recall that instructions are predicated by a
register or temporary.

Write the algorithm for if-conversion of arbitrary Tree1 programs. Justify its correctness.

3.2 DAG programs

We now consider a richer class, DAG1, of directed acyclic graphs with one entry and one exit
and outdegree 2 for any other block. Here is an example:

Question #6
Give predicate on each basic block. Justify your answer on the block “then”.

We consider the notion of control-dependence on blocks: A is control-dependent on B if, given
U and V the successors of B, without order,

• There exists a path from U to A

• No paths from V lead to A

We note ControlDeps(A) the control dependencies of A.

Question #7
In the program above, we have ControlDeps(then) = {else}. Justify it.

Compute and justify the control dependencies for all other blocks.

Question #8 (Difficult)
For B a block in a program P, express predicate(B) in term of ControlDeps.

Page 6 on 14

TD CAP - 2024-25

Question #9 (Difficult)
In which order should the blocks be linearized ? Give a graph walk that achieves it.

4 Duo-processor for video-game execution

The Game Boy, released in 1989, was equipped with a Z80 processor. This processor was
peculiar: it was an hybrid 8bit/16bit processor containing seven 8-bit registers (A,B,C,D,E,H,L).
However, some instructions operated on 16bits by pairing together two registers (BC, DE, HL).
Memory was addressed by 16bit pointers. This is illustrated by the picture below.

(Image from Wikipedia)

In this exercise, we will consider a RISCV-like Instruction Set Assembly with the same register
set, both 8bit and 16bits instructions, and the compilation challenge that entails. For simplicity,
we will only consider straight code with no branching.
More precisely, all arithmetic instructions (ADD, SUB, DIV, MUL, XOR) come in a 16bit version
(ADD16, . . .) and a 8bit version (MUL8, . . .). Immediates (used in LI, for instance) can only be
8-bit wide. LOAD and STORE are done with 16 bits addresses and access 16 bits at a time, with
an optional immediate offset.
As a first example, we consider the vector multiplication of two 8 bits 2D vectors (x0 x1) and
(x′0 x′1) stored at address HL and (HL+16) respectively. More precisely, we wish to implement
x0 ∗ x′0 + x1 ∗ x′1. The assembly program below computes the result in register A. Note that
memory access is done inside 16 bits duo-registers (here, BC and DE respectively), whose 8-bits
halves are used independently to then multiply and sum the coordinates.

LOAD BC HL,offset(0); BC <− LOAD(HL)
LOAD DE HL,offset(16); DE <− LOAD(HL+16)

3 MUL8 B B D ; B <− B * D
MUL8 C C E ; C <− C * E
ADD8 A B C ; A <− B + C

Question #1
Write a program that, given an 8bit 3D vector, computes the 8-bit average of its component.
The memory address of the first word of the vector is given in register HL. The result should
be in register A.

Page 7 on 14

TD CAP - 2024-25

In the rest of this exercise, we wish to compile a single basic bloc in SSA 3-address instructions.
Let us consider the following 3-address instructions:

i ::= t← i8 (Load 8bits Immediate)
| t← t′ (Move)
| t← t′ + t′′ | t′ ∗ t′′ | . . . (Arithmetic Operations)
| t← t′.t′′ (Concatenation of 8bit Words)
| t.t′ ← t′′ (Split of 16bit Words)
| t← load(t′, i8) (Memory Load)
| store(t, t′, i8) (Memory Store)

t← t′.t′′ concatenates two 8bits integers into a 16bits integer. t.t′ ← t′′ splits a 16bits integer in t′′

into its upper part in t and its lower part in t′. Load and store take a 16bits address and return a
16bits integer, with an optional immediate offset. Programs must be in single static assignment
form: variables can’t be redefined.

The example above corresponds to the following 3-address program:

t1 <− load(t0,offset (0))
t2 <− load(t0,offset (16))
t3.t4 <− t1
t5.t6 <− t2

5 t7 <− t3 * t5
t8 <− t4 * t6
t9 <− t7 + t8
ret t9

Question #2
Let us consider the following program:

t1 <− load(t0, offset (0))
2 t2.t3 <− t1

t4 <− t3 * 2
t5 <− t2.t4
store(t5 , t0 , offset (0))

What does it do?

What is the purpose of such a program?

Question #3
Recall the goal of instruction selection and instruction scheduling.

Question #4
Consider the instruction: t9 ← t7 + t8. What is missing from the syntax to write instruction
selection for this instruction?

Page 8 on 14

TD CAP - 2024-25

Question #5
We now assume that there exists an analysis that provides a function size which, given a
temporary, provide the size of the register it should be stored in: size(t) = 8 or size(t) = 16.

Do the instruction selection for the program in Question 2, with the following size function:

temporary size
t2, t3, t4 8bits
t0, t1, t5 16bits

Question #6
Propose an instruction selection algorithm for the given instruction language.

Question #7
Recall the goal of register allocation. What is the usual technique to solve such problem?
What are the challenges for register allocation in this architecture?

Question #8
Give a register allocation for the program obtained in Question 5 and compile it to valid
assembly.

Question #9
Let us now consider the following graph-coloring problem: given a set C of colors, a compati-
bility relation ∼ on colors, and G = (V, E) a graph with vertices V and edges E, the algorithm
color(C,∼, G) returns a map M from V to C such that for all (v, v′) ∈ E, M(v) ∼ M(v′).

Let B a block in SSA 3-address instructions presented above. Formulate informally how to
compute register allocation of B using the color algorithm. Demonstrate it on the program
from Question 2.

Remark: It is not required to propose an implementation for the color algorithm.

Question #10 (Difficult)
Propose informally an analysis that would allow obtaining the size function.

5 Exceptional expressions

In this exercise, we consider expressions that can fail, but only locally. More precisely, we enrich
a traditional language of expressions, as the one we studied in WHILE, with two new constructs.

• fail(e) indicates that the execution fails with the value returned by e.

• guard(e) evaluates an expression e, catching its potential failure.

These primitives allows one to write expressions like:

guard(3 + fail(true))

that returns true because the expression fails but the failure is caught.
On the other hand “guard(3 + 4)” will return 7 as no failure occurred.
Such exceptions are particularly useful when combined with ternary conditions of the form

e ? et : ee that allow for conditional evaluations inside expressions. We will introduce these
conditionals in the exercise.

Page 9 on 14

TD CAP - 2024-25

5.1 Syntax and Semantics

The syntax and semantics of expressions is given below. It is similar to expressions in WHILE.
We consider the new domain of exceptional values v∗ ∈ V∗, which are either a usual value v ∈ V ,
or a value returned by raising an exception.

Grammar:

v ∈ V ::= i ∈ Z Integers
| b ∈ B Booleans

v∗ ∈ V∗ ::= v ∈ V Success
| Fail(v) Failure

e ∈ E ::= c Constants
| x Variable
| e + e Addition
| e ∥ e | e && e Bool Ops
| fail(e) Failure
| guard(e) Guard

Evaluation: Val : E × State→ V∗

Val(c, σ) = value(c) Val(x, σ) = σ(x)

Val(e1 + e2, σ) = Val(e1, σ) +∗ Val(e2, σ)

Val(e1 ∥ e2, σ) = Val(e1, σ) ∥∗ Val(e2, σ)

Val(e1 && e2, σ) = Val(e1, σ) &&∗ Val(e2, σ)

Val(e, σ) = v
Val(fail(e), σ) = Fail(v)

Val(e, σ) = v
Val(guard(e), σ) = v

Val(e, σ) = Fail(v)
Val(guard(e), σ) = v

We extend all binary operators (+, ∥, &&) to exceptional values (+∗, ∥∗, &&∗). Below is the
definition for +∗, the others are similar:

n +∗ n ≡ n + n v2 +
∗ Fail(v) ≡ Fail(v) +∗ v∗2 ≡ Fail(v)

In the examples, we also use comparison operators between integers (<, >, ...) with the
straightforward semantics and its extension to failed values.

Expression evaluation is defined as Val(e, σ) like for WHILE. When σ is not given, it is ∅.
Note that fail expressions are evaluated when they are encountered and are propagated up

in the expression.

Question #1
What does the expression below evaluates to? Give its derivation.

guard(3 + fail(true && false)) && true

Question #2
We now add a ternary conditional operator e ? ethen : eelse . It evaluates e to a boolean. If it
is true, it evaluates ethen, otherwise eelse. If any of these expressions fail, it fails as well. If the
condition fails none of the branches is evaluated.

Give the evaluation rules for this new construct.

Question #3
Do the provide rules allow to evaluate guard(fail(3 + fail(4)))? Propose an appropriate
reduction rule that ensures that nested fails are evaluated to an exceptional value.

Page 10 on 14

TD CAP - 2024-25

Question #4
Given the environment σ which associates x to an integer, what is the evaluation of (depend-
ing on the value of x):

guard(x > 0 ? fail(true) : fail(−x)) + 10

What is the problem ?

5.2 Typing

We suppose that the evaluation rules you defined in the preceding questions are now part of the
semantics.

We want to design a type system to ensure that failure values are type-compatible, and that
guards return a coherent type. The purpose of the type system is to be able to reject expressions
like (provided x has type Z):

guard(x > 0 ? fail(true) : fail(−x)) + 10 (a)

But accept expressions like:

guard((x < 2 ? 3 : fail(true)) > 5) (b)

We consider the types τ = B | Z | ⊥ and the typing judgement Γ ⊢ e : τsuccess, τf ail when
expression e, with environment Γ, evaluates to a value of type τsuccess or fails with a value of type
τf ail . The new type ⊥ is used to denote types that cannot exist, like the failure type for a guarded
expression for example.

We have two operations on types: ≤ and ⊔ such that

• for all τ, ⊥ ≤ τ, and τ ≤ τ;

• B ̸≤ Z and Z ̸≤ B;

• τ1 ⊔ τ2 = τ2 if τ1 ≤ τ2 and symmetrically τ1 ⊔ τ2 = τ1 if τ2 ≤ τ1

• otherwise τ1 ⊔ τ2 is undefined

Selected typing rules are provided below.

(x, τ) ∈ Γ
Γ ⊢ x : τ,⊥

Γ ⊢ e1 : τ1, τf 1 Γ ⊢ e2 : τ2, τf 2
τ1 ≤ Z τ2 ≤ Z τf = τf 1 ⊔ τf 2

Γ ⊢ e1 + e2 : Z, τf

Γ ⊢ e : τ1, τ2 τ = τ1 ⊔ τ2

Γ ⊢ guard(e) : τ,⊥

Question #5
Propose a typing rule for fail(e). Illustrate it by showing the derivation for 3+guard(fail(5))

Question #6
Show the derivation for: guard(3 + guard(fail(5)))

Page 11 on 14

TD CAP - 2024-25

Question #7
Give the typing rule for the ternary conditional.

Question #8
Give the typing derivation for the expression (a) and (b) above (before the definition of the
type system).

Question #9
State but do not prove a soundness theorem of your typing. It should state something about
the evaluation of the well-typed expression, and something about what values can be ob-
tained.

Question #10 (Difficult)
Explain in two sentences how the proof should be done. Give a formal proof of the guard(e)
case only.

Page 12 on 14

TD CAP - 2024-25

5.3 Code generation

We now want to generate a control flow graph for such expressions. For instance, the expression

guard((x ? 3 : fail(false)) > 5)

yields the RISCV assembly shown below, with its control flow graph. We can see that the “else”
branch of the conditional “x ? 3 : fail(false) ”, which is a fail, is implemented by a direct jump
to the end of program, where the guard is resolved, and thus bypassing the computation of the
expression “. . . > 5”.

BEQ x zero lbl_else0
2 LI t0 3

J lbl_endif0
lbl_else0 :

LI t2 0
J lbl_endguard

7 lbl_endif0 :
BGT t0 5 lbl_else1
LI t1 1
J lbl_endif1

lbl_else1 :
12 LI t1 0

lbl_endif1 :
MOV t2 t1

lbl_endguard:
return t2

Similarly to the course on the WHILE language, we consider syntax-directed rules to implement
a code generation function code(e, t) which emits the assembly code for e and puts its result in
temporary t.

Remark: Selected code generation rules for WHILE are available in the companion sheet.

Question #11
Recall (informally) the steps to obtain control flow graph from a WHILE program.

Question #12
Propose a code generation rule for e ? ethen : eelse .

Question #13
Extend the code generation function to the context of exceptional expressions, and propose
code generation rules for guard(e) and fail(e).

Hint: You can add new arguments to the code function.

Question #14
What about nested guards? Apply your rules on the example from Question 6 and show the

Page 13 on 14

TD CAP - 2024-25

control flow graph.

Question #15 (Difficult)
We now consider a more general exception construction where guard and fail specify a label
ℓ: fail(ℓ(e)) raises the exception ℓ with payload e, and guard(e) with ℓ catches only the
ℓ-exceptions.

Propose a compilation strategy for this extension.

Question #16 (Difficult)
What are the differences in execution between our exception construct and the one in general
purpose languages, such as Java, C++ or OCaml ? Could the two be used conjointly ?

Page 14 on 14

	Code production and register allocation
	Program Slicing
	Data Dependencies
	Control Dependencies

	If-conversion and Predicated Instructions
	Tree programs
	DAG programs

	Duo-processor for video-game execution
	Exceptional expressions
	Syntax and Semantics
	Typing
	Code generation

