pieuvre/main.ml

140 lines
3.5 KiB
OCaml

open Parser_entry
open Affichage
open Typing
open Proof
open Types
type entry =
Simple of Lam.lam
| Reduce of Lam.lam
| AlphaEquiv of Lam.lam * Lam.lam
let parse_lam t =
match Parser.main Lexer.token t with
| Lam l -> l
| Cmd _ -> failwith "entry must be a lam"
let parse_cmd t =
match Parser.main Lexer.token t with
| Cmd c -> c
| Lam _ -> failwith "entry must be a cmd"
let beta_reduce e =
let rec aux = function
Some e ->
print_expr e;
print_newline ();
aux (Lam.betastep e);
| None -> ()
in print_expr e;
print_newline ();
let e = Lam.alpha_convert ~readable:true e in
print_expr e;
print_newline ();
aux (Lam.betastep e)
let alpha_get_lam where_from =
let input_str = In_channel.input_all where_from in
match Str.split (Str.regexp "&") input_str with
[s1; s2] -> AlphaEquiv (
parse_lam (Lexing.from_string (s1^"\n")),
parse_lam (Lexing.from_string s2)
)
| _ -> failwith "Alpha-equivalence: nombre de delimiteurs incorrect"
let rec interactive ((g, gs) : proof) : proof =
begin
let fresh_proof (ty : ty) =
(Some (Ref (ref Hole), ty, []), [])
in
let _ = match g with
None -> print_string "No more goals.\n"
| Some g' -> print_goal g'
in
match parse_cmd (Lexing.from_string ((read_line ())^"\n")) with
Goal ty -> fresh_proof ty |> interactive
| Tact t ->
begin match t with
Exact_term e ->
tact_exact_term (g, gs) e |> interactive
| Exact_proof s ->
tact_exact_proof (g, gs) s |> interactive
| Assumption ->
tact_assumption (g, gs) |> interactive
| Intro ->
tact_intro (g, gs) |> interactive
| Cut ty ->
tact_cut (g, gs) ty |> interactive
| Apply id ->
tact_apply (g, gs) id |> interactive
end
end
let interpret e =
begin
print_expr e;
print_newline();
print_ty (typeinfer [] e);
print_newline();
let _ = interactive (None, []) in ()
end
let nom_fichier = ref ""
let reduce = ref false
let alpha = ref false
let equiv_fichier = ref ""
let parse_channel_lam c =
let lexbuf = Lexing.from_channel c in
parse_lam lexbuf
let recupere_entree () =
let optlist = [
("-alpha",
Arg.Set alpha,
"Vérifie l'alpha équivalence de deux termes séparés par &");
("-reduce",
Arg.Set reduce,
"Affiche les réductions successives du lambda-terme")
] in
let usage = "Bienvenue à bord." in (* message d'accueil, option -help *)
Arg.parse (* ci-dessous les 3 arguments de Arg.parse : *)
optlist (* la liste des options definie plus haut *)
(fun s -> nom_fichier := s) (* la fonction a declencher lorsqu'on recupere un string qui n'est pas une option : ici c'est le nom du fichier, et on stocke cette information dans la reference nom_fichier *)
usage; (* le message d'accueil *)
try
let where_from = match !nom_fichier with
| "" -> stdin
| s -> open_in s in
if !alpha
then alpha_get_lam where_from
else if !reduce
then Reduce (parse_channel_lam where_from)
else Simple (parse_channel_lam where_from)
with e -> (Printf.printf "problème de saisie\n"; raise e)
(* la fonction principale *)
let run () =
try
match recupere_entree () with
Simple l -> let _ = interpret l in ()
| Reduce l -> let _ = beta_reduce l in ()
| AlphaEquiv (l1, l2) -> begin
if ((Lam.(=~)) l1 l2) then
print_string "true\n"
else
print_string "false\n"
end;
flush stdout
with e -> raise e
let _ = run ()