tests de l'alpha équiv, commentaire de mon code
This commit is contained in:
parent
4719e2c836
commit
075aa267a7
4
hlam.ml
4
hlam.ml
@ -8,8 +8,8 @@ type hlam = (* hollow lam *)
|
|||||||
| HVar of id
|
| HVar of id
|
||||||
| HExf of hlam * Types.ty
|
| HExf of hlam * Types.ty
|
||||||
| HPair of hlam * hlam
|
| HPair of hlam * hlam
|
||||||
| HLeft of hlam * Types.ty
|
| HLeft of hlam * Types.ty (* l (M : t) *)
|
||||||
| HRight of hlam * Types.ty
|
| HRight of hlam * Types.ty (* r (M : t) *)
|
||||||
| Ref of hlam ref
|
| Ref of hlam ref
|
||||||
| Hole
|
| Hole
|
||||||
|
|
||||||
|
8
main.ml
8
main.ml
@ -81,6 +81,7 @@ let check_via_coq (e : lam) (t : ty) : unit =
|
|||||||
then ""
|
then ""
|
||||||
else "intro. " ^ repeat_intro (n-1)
|
else "intro. " ^ repeat_intro (n-1)
|
||||||
in
|
in
|
||||||
|
(* build checker.v *)
|
||||||
let m = fill_ty_map StringMap.empty t in
|
let m = fill_ty_map StringMap.empty t in
|
||||||
let (ty_vars, intro_n) = intro_of_ty m in
|
let (ty_vars, intro_n) = intro_of_ty m in
|
||||||
let goal_ty = string_of_ty t in
|
let goal_ty = string_of_ty t in
|
||||||
@ -120,7 +121,8 @@ let rec interactive (get_instr : unit -> instr) (sl : (interactive_state) list)
|
|||||||
|
|
||||||
try
|
try
|
||||||
match get_instr () with
|
match get_instr () with
|
||||||
Cmd c -> begin match c with
|
Cmd c ->
|
||||||
|
begin match c with
|
||||||
Goal ty ->
|
Goal ty ->
|
||||||
let rh = Ref (ref Hole) in
|
let rh = Ref (ref Hole) in
|
||||||
[Some (rh, ty), (Some (rh, ty, []), [])] |> interactive get_instr
|
[Some (rh, ty), (Some (rh, ty, []), [])] |> interactive get_instr
|
||||||
@ -132,6 +134,8 @@ let rec interactive (get_instr : unit -> instr) (sl : (interactive_state) list)
|
|||||||
| Some (h, t) ->
|
| Some (h, t) ->
|
||||||
let l = lam_of_hlam h
|
let l = lam_of_hlam h
|
||||||
|> beta_reduce in
|
|> beta_reduce in
|
||||||
|
(* uncaught Could_not_infer but won't happened
|
||||||
|
because exact only allow typable terms *)
|
||||||
if Typing.typecheck [] l t then begin
|
if Typing.typecheck [] l t then begin
|
||||||
print_string "Ok";
|
print_string "Ok";
|
||||||
(cg, (g, gs))::sq |> interactive get_instr
|
(cg, (g, gs))::sq |> interactive get_instr
|
||||||
@ -144,6 +148,8 @@ let rec interactive (get_instr : unit -> instr) (sl : (interactive_state) list)
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
| Check -> begin match cg with
|
| Check -> begin match cg with
|
||||||
|
(* !! Doesn't work with terms containing exfalso
|
||||||
|
and Left / Right !! *)
|
||||||
None ->
|
None ->
|
||||||
print_error "No current goal" "";
|
print_error "No current goal" "";
|
||||||
(cg, (g, gs))::sq |> interactive get_instr
|
(cg, (g, gs))::sq |> interactive get_instr
|
||||||
|
83
proof.ml
83
proof.ml
@ -1,6 +1,6 @@
|
|||||||
open Hlam
|
open Hlam
|
||||||
open Lam
|
open Lam
|
||||||
open Types
|
open Types
|
||||||
|
|
||||||
type context = (id * id * hlam * Types.ty) list
|
type context = (id * id * hlam * Types.ty) list
|
||||||
type goal = hlam * Types.ty * context
|
type goal = hlam * Types.ty * context
|
||||||
@ -40,19 +40,16 @@ let clean_proof ((g, gs) : proof) : (hlam ref * hlam ref) list ref * proof =
|
|||||||
| None -> None
|
| None -> None
|
||||||
in assoc, (g', List.map (clean_goal assoc) gs)
|
in assoc, (g', List.map (clean_goal assoc) gs)
|
||||||
|
|
||||||
let goal_is_over ((g, _) : proof) : bool =
|
(* typecheck e t cs types e against t in the typing environment defined
|
||||||
match g with
|
by cs *)
|
||||||
None -> true
|
|
||||||
| Some _ -> false
|
|
||||||
|
|
||||||
let typecheck (e : lam) (expected_t : Types.ty) (cs : context) : bool =
|
let typecheck (e : lam) (expected_t : Types.ty) (cs : context) : bool =
|
||||||
let gam_of_ctx : context -> Types.gam =
|
let gam_of_ctx : context -> Types.gam =
|
||||||
let f = fun (_, var_id, _, ty) -> (var_id, ty) in
|
(fun (_, var_id, _, ty) -> (var_id, ty)) |>
|
||||||
List.map f
|
List.map
|
||||||
in
|
in
|
||||||
let g = gam_of_ctx cs in
|
let g = gam_of_ctx cs in
|
||||||
try Typing.typecheck g e expected_t
|
try Typing.typecheck g e expected_t
|
||||||
with _ -> raise (TacticFailed "unable to type")
|
with Typing.Could_not_infer -> raise (TacticFailed "couldn't not infer all variable types")
|
||||||
|
|
||||||
let rec get_term_by_id (hyp : id) : context -> hlam option =
|
let rec get_term_by_id (hyp : id) : context -> hlam option =
|
||||||
function
|
function
|
||||||
@ -71,10 +68,13 @@ let next_goal (gs : goal list) : (goal option * goal list) =
|
|||||||
[] -> None, []
|
[] -> None, []
|
||||||
| g :: gs -> Some g, gs
|
| g :: gs -> Some g, gs
|
||||||
|
|
||||||
let tact_exact_term ((g, gs) : proof) (e : lam) : proof =
|
let get_goal : goal option -> hlam * ty * context =
|
||||||
match g with
|
function
|
||||||
None -> raise (TacticFailed "no current goal")
|
None -> raise (TacticFailed "no current goal")
|
||||||
| Some (h, expected_t, cs) ->
|
| Some g -> g
|
||||||
|
|
||||||
|
let tact_exact_term ((g, gs) : proof) (e : lam) : proof =
|
||||||
|
let (h, expected_t, cs) = get_goal g in
|
||||||
if typecheck e expected_t cs
|
if typecheck e expected_t cs
|
||||||
then
|
then
|
||||||
begin
|
begin
|
||||||
@ -84,9 +84,7 @@ let tact_exact_term ((g, gs) : proof) (e : lam) : proof =
|
|||||||
else raise (TacticFailed "type mismatch")
|
else raise (TacticFailed "type mismatch")
|
||||||
|
|
||||||
let tact_exact_proof ((g, gs) : proof) (hyp : id) : proof =
|
let tact_exact_proof ((g, gs) : proof) (hyp : id) : proof =
|
||||||
match g with
|
let (h, expected_t, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, expected_t, cs) ->
|
|
||||||
match get_term_by_id hyp cs with
|
match get_term_by_id hyp cs with
|
||||||
Some h' ->
|
Some h' ->
|
||||||
if typecheck (lam_of_hlam h') expected_t cs
|
if typecheck (lam_of_hlam h') expected_t cs
|
||||||
@ -99,19 +97,15 @@ let tact_exact_proof ((g, gs) : proof) (hyp : id) : proof =
|
|||||||
| None -> raise (TacticFailed "")
|
| None -> raise (TacticFailed "")
|
||||||
|
|
||||||
let tact_assumption ((g, gs) : proof) : proof =
|
let tact_assumption ((g, gs) : proof) : proof =
|
||||||
match g with
|
let (h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, goal_ty, cs) ->
|
|
||||||
match get_term_by_type goal_ty cs with
|
match get_term_by_type goal_ty cs with
|
||||||
None -> (* failwith "assumption failed" *) (g, gs)
|
None -> raise (TacticFailed "no such hypothesis")
|
||||||
| Some h' ->
|
| Some h' ->
|
||||||
fill h h';
|
fill h h';
|
||||||
next_goal gs
|
next_goal gs
|
||||||
|
|
||||||
let tact_intro ((g, gs) : proof) : proof =
|
let tact_intro ((g, gs) : proof) : proof =
|
||||||
match g with
|
let (h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, goal_ty, cs) ->
|
|
||||||
match goal_ty with
|
match goal_ty with
|
||||||
Arr (t1, t2) ->
|
Arr (t1, t2) ->
|
||||||
let (hyp_id, var_id) = get_fresh_hyp () in
|
let (hyp_id, var_id) = get_fresh_hyp () in
|
||||||
@ -119,13 +113,10 @@ let tact_intro ((g, gs) : proof) : proof =
|
|||||||
let new_h = Ref (ref Hole) in
|
let new_h = Ref (ref Hole) in
|
||||||
fill h (HFun ((var_id, t1), new_h));
|
fill h (HFun ((var_id, t1), new_h));
|
||||||
Some (new_h, t2, cs), gs
|
Some (new_h, t2, cs), gs
|
||||||
| _ -> (* failwith "expected function" *) (* (g, gs) *)
|
| _ -> raise (TacticFailed "expected an implication")
|
||||||
raise (TacticFailed "expected function")
|
|
||||||
|
|
||||||
let tact_cut ((g, gs) : proof) (new_t : Types.ty) : proof =
|
let tact_cut ((g, gs) : proof) (new_t : Types.ty) : proof =
|
||||||
match g with
|
let (h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, goal_ty, cs) ->
|
|
||||||
(* subgoal 2 : new_t -> goal_ty *)
|
(* subgoal 2 : new_t -> goal_ty *)
|
||||||
let arrow_h = Ref (ref Hole) in
|
let arrow_h = Ref (ref Hole) in
|
||||||
let arrow_goal = (arrow_h, Arr (new_t, goal_ty), cs) in
|
let arrow_goal = (arrow_h, Arr (new_t, goal_ty), cs) in
|
||||||
@ -136,12 +127,19 @@ let tact_cut ((g, gs) : proof) (new_t : Types.ty) : proof =
|
|||||||
Some (new_h, new_t, cs), gs
|
Some (new_h, new_t, cs), gs
|
||||||
|
|
||||||
let tact_apply ((g, gs) : proof) (hyp_id : id) : proof =
|
let tact_apply ((g, gs) : proof) (hyp_id : id) : proof =
|
||||||
|
(* check if hypothesis suits apply *)
|
||||||
let rec is_implied (goal_ty : ty) (t : ty) : bool =
|
let rec is_implied (goal_ty : ty) (t : ty) : bool =
|
||||||
match t with
|
match t with
|
||||||
t when t = goal_ty -> true
|
t when t = goal_ty -> true
|
||||||
| Arr (_, t2) -> is_implied goal_ty t2
|
| Arr (_, t2) -> is_implied goal_ty t2
|
||||||
| _ -> false
|
| _ -> false
|
||||||
in
|
in
|
||||||
|
(* supposes is_implied goal_ty impl_ty
|
||||||
|
goal_ty : conclusion of the implication
|
||||||
|
impl_ty : type of the implication
|
||||||
|
impl_h : building the term we will apply to goal_h
|
||||||
|
goal_h : hole of the current goal
|
||||||
|
h : current hole of impl_h*)
|
||||||
let rec generate_goals (goal_ty : ty) (impl_ty : ty) (impl_h : hlam)
|
let rec generate_goals (goal_ty : ty) (impl_ty : ty) (impl_h : hlam)
|
||||||
(goal_h : hlam) (h : hlam) (cs : context) (gs : goal list) : proof =
|
(goal_h : hlam) (h : hlam) (cs : context) (gs : goal list) : proof =
|
||||||
match impl_ty with
|
match impl_ty with
|
||||||
@ -151,12 +149,15 @@ let tact_apply ((g, gs) : proof) (hyp_id : id) : proof =
|
|||||||
let _ = fill goal_h impl_h in
|
let _ = fill goal_h impl_h in
|
||||||
Some (sub_h, t1, cs), gs
|
Some (sub_h, t1, cs), gs
|
||||||
| Arr (t1, t2) ->
|
| Arr (t1, t2) ->
|
||||||
let sub_h = Ref (ref Hole) in
|
(* transforms impl_h from ((f ?x_0) ?) to (((f ?x_0) ?x_1) ?)
|
||||||
let new_h = Ref (ref Hole) in
|
where ? is h and ?x_i are holes associated with
|
||||||
|
the proof of x_i*)
|
||||||
|
let sub_h = Ref (ref Hole) in (* proof of t1 *)
|
||||||
|
let new_h = Ref (ref Hole) in (* proof of t2 *)
|
||||||
let _ = fill h sub_h in
|
let _ = fill h sub_h in
|
||||||
let impl_h = HApp (impl_h, new_h) in
|
let impl_h = HApp (impl_h, new_h) in
|
||||||
let gs = (sub_h, t1, cs) :: gs in
|
let gs = (sub_h, t1, cs) :: gs in (* add the proof of t1 to goals *)
|
||||||
generate_goals goal_ty t2 impl_h goal_h new_h cs gs
|
generate_goals goal_ty t2 impl_h goal_h new_h cs gs (* generate_goals for the proof of t2 *)
|
||||||
| _ -> failwith "impossible"
|
| _ -> failwith "impossible"
|
||||||
in
|
in
|
||||||
let rec get_hyp : context -> (hlam * ty) = function
|
let rec get_hyp : context -> (hlam * ty) = function
|
||||||
@ -164,9 +165,7 @@ let tact_apply ((g, gs) : proof) (hyp_id : id) : proof =
|
|||||||
| (hyp_id', _, h', t') :: _ when hyp_id = hyp_id' -> (h', t')
|
| (hyp_id', _, h', t') :: _ when hyp_id = hyp_id' -> (h', t')
|
||||||
| _ :: cs -> get_hyp cs
|
| _ :: cs -> get_hyp cs
|
||||||
in
|
in
|
||||||
match g with
|
let (goal_h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (goal_h, goal_ty, cs) ->
|
|
||||||
let impl_h, impl_ty = get_hyp cs in
|
let impl_h, impl_ty = get_hyp cs in
|
||||||
let new_h = Ref (ref Hole) in
|
let new_h = Ref (ref Hole) in
|
||||||
let impl_h_2 = HApp (impl_h, new_h) in
|
let impl_h_2 = HApp (impl_h, new_h) in
|
||||||
@ -183,9 +182,7 @@ let tact_intros : proof -> proof =
|
|||||||
in push
|
in push
|
||||||
|
|
||||||
let tact_split ((g, gs) : proof) : proof =
|
let tact_split ((g, gs) : proof) : proof =
|
||||||
match g with
|
let (h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, goal_ty, cs) ->
|
|
||||||
match goal_ty with
|
match goal_ty with
|
||||||
| And(t1, t2) ->
|
| And(t1, t2) ->
|
||||||
let h1 = Ref (ref Hole) in
|
let h1 = Ref (ref Hole) in
|
||||||
@ -196,9 +193,7 @@ let tact_split ((g, gs) : proof) : proof =
|
|||||||
|
|
||||||
|
|
||||||
let tact_right ((g, gs) : proof) : proof =
|
let tact_right ((g, gs) : proof) : proof =
|
||||||
match g with
|
let (h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, goal_ty, cs) ->
|
|
||||||
match goal_ty with
|
match goal_ty with
|
||||||
| Or(_, t_r) as t ->
|
| Or(_, t_r) as t ->
|
||||||
let new_h = Ref (ref Hole) in
|
let new_h = Ref (ref Hole) in
|
||||||
@ -207,9 +202,7 @@ let tact_right ((g, gs) : proof) : proof =
|
|||||||
| _ -> raise (TacticFailed "Not a disjunction")
|
| _ -> raise (TacticFailed "Not a disjunction")
|
||||||
|
|
||||||
let tact_left ((g, gs) : proof) : proof =
|
let tact_left ((g, gs) : proof) : proof =
|
||||||
match g with
|
let (h, goal_ty, cs) = get_goal g in
|
||||||
None -> raise (TacticFailed "no current goal")
|
|
||||||
| Some (h, goal_ty, cs) ->
|
|
||||||
match goal_ty with
|
match goal_ty with
|
||||||
| Or(t_l, _) as t->
|
| Or(t_l, _) as t->
|
||||||
let new_h = Ref (ref Hole) in
|
let new_h = Ref (ref Hole) in
|
||||||
@ -231,7 +224,3 @@ let rec apply_tactic (p : proof) (t : tactic) : proof =
|
|||||||
| TLeft -> tact_left p
|
| TLeft -> tact_left p
|
||||||
| TTry t -> try apply_tactic p t with TacticFailed _ -> p
|
| TTry t -> try apply_tactic p t with TacticFailed _ -> p
|
||||||
|
|
||||||
|
|
||||||
let tact_try (p : proof) (t : tactic) : proof =
|
|
||||||
try apply_tactic p t
|
|
||||||
with TacticFailed _ -> p
|
|
||||||
|
1
tests/alpha_equiv/free_var_1.lam
Normal file
1
tests/alpha_equiv/free_var_1.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
x & x
|
1
tests/alpha_equiv/free_var_2.lam
Normal file
1
tests/alpha_equiv/free_var_2.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
x & y
|
1
tests/alpha_equiv/free_var_3.lam
Normal file
1
tests/alpha_equiv/free_var_3.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
x (fun (y : A) => y) & x (fun (z : A) => z)
|
1
tests/alpha_equiv/not_same_but_same_order.lam
Normal file
1
tests/alpha_equiv/not_same_but_same_order.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
(fun (x : A) => fun (y : B) => x y) & (fun (x : A) => fun (y : B) => y x)
|
1
tests/alpha_equiv/not_same_free.lam
Normal file
1
tests/alpha_equiv/not_same_free.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
(fun (x : A) => z) & (fun (z : A) => z)
|
1
tests/alpha_equiv/same_but_different_order.lam
Normal file
1
tests/alpha_equiv/same_but_different_order.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
(fun (x : A) => fun (y : B) => x y) & (fun (y : A) => fun (x : B) => y x)
|
1
tests/alpha_equiv/same_free.lam
Normal file
1
tests/alpha_equiv/same_free.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
(fun (x : A) => z) & (fun (y : A) => z)
|
1
tests/alpha_equiv/same_term_but_not_same_type.lam
Normal file
1
tests/alpha_equiv/same_term_but_not_same_type.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
(fun (x : A) => z) & (fun (y : B) => z)
|
1
tests/free_or_not.lam
Normal file
1
tests/free_or_not.lam
Normal file
@ -0,0 +1 @@
|
|||||||
|
(fun (z : A) => (fun (x : A) => z)) (fun (y : A) => z)
|
Loading…
Reference in New Issue
Block a user