dendrobates-t-azureus/flush_flush/src/lib.rs
Guillume DIDIER 168f81a19e Final experiments
Code for final experiments.
2020-11-24 10:25:32 +01:00

688 lines
23 KiB
Rust

#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
pub mod naive;
use cache_side_channel::SideChannelError::{AddressNotCalibrated, AddressNotReady};
use cache_side_channel::{
CacheStatus, ChannelFatalError, CoreSpec, MultipleAddrCacheSideChannel, SideChannelError,
SingleAddrCacheSideChannel,
};
use cache_utils::calibration::{
accumulate, calibrate_fixed_freq_2_thread, calibration_result_to_ASVP, get_cache_slicing,
get_vpn, only_flush, only_reload, CalibrateOperation2T, CalibrationOptions, ErrorPredictions,
HistParams, HistogramCumSum, PotentialThresholds, Verbosity, ASVP, CFLUSH_BUCKET_NUMBER,
CFLUSH_BUCKET_SIZE, CFLUSH_NUM_ITER, PAGE_LEN, PAGE_SHIFT,
};
use cache_utils::calibration::{ErrorPrediction, Slice, Threshold, ThresholdError, AV, SP, VPN};
use cache_utils::complex_addressing::CacheSlicing;
use cache_utils::{find_core_per_socket, flush, maccess, noop};
use nix::sched::{sched_getaffinity, sched_setaffinity, CpuSet};
use nix::unistd::Pid;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::fmt::{Debug, Formatter};
pub struct FlushAndFlush {
thresholds: HashMap<SP, ThresholdError>,
addresses_ready: HashSet<*const u8>,
slicing: CacheSlicing,
attacker_core: usize,
victim_core: usize,
preferred_address: HashMap<*const u8, *const u8>,
}
#[derive(Debug)]
pub enum FlushAndFlushError {
NoSlicing,
Nix(nix::Error),
}
#[derive(Debug)]
pub struct SingleFlushAndFlush(FlushAndFlush);
impl SingleFlushAndFlush {
pub fn new(attacker_core: usize, victim_core: usize) -> Result<Self, FlushAndFlushError> {
FlushAndFlush::new(attacker_core, victim_core).map(|ff| SingleFlushAndFlush(ff))
}
pub fn new_any_single_core() -> Result<(Self, CpuSet, usize), FlushAndFlushError> {
FlushAndFlush::new_any_single_core()
.map(|(ff, old, core)| (SingleFlushAndFlush(ff), old, core))
}
pub fn new_any_two_core(
distinct: bool,
) -> Result<(Self, CpuSet, usize, usize), FlushAndFlushError> {
FlushAndFlush::new_any_two_core(distinct)
.map(|(ff, old, attacker, victim)| (SingleFlushAndFlush(ff), old, attacker, victim))
}
}
impl CoreSpec for SingleFlushAndFlush {
fn main_core(&self) -> CpuSet {
self.0.main_core()
}
fn helper_core(&self) -> CpuSet {
self.0.helper_core()
}
}
impl SingleAddrCacheSideChannel for SingleFlushAndFlush {
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError> {
unsafe { self.0.test_single(addr) }
}
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError> {
unsafe { self.0.prepare_single(addr) }
}
fn victim_single(&mut self, operation: &dyn Fn()) {
self.0.victim_single(operation)
}
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.0.calibrate_single(addresses) }
}
}
impl FlushAndFlush {
pub fn new(attacker_core: usize, victim_core: usize) -> Result<Self, FlushAndFlushError> {
if let Some(slicing) = get_cache_slicing(find_core_per_socket()) {
if !slicing.can_hash() {
return Err(FlushAndFlushError::NoSlicing);
}
let ret = Self {
thresholds: Default::default(),
addresses_ready: Default::default(),
slicing,
attacker_core,
victim_core,
preferred_address: Default::default(),
};
Ok(ret)
} else {
Err(FlushAndFlushError::NoSlicing)
}
}
// Takes a buffer / list of addresses or pages
// Takes a list of core pairs
// Run optimized calibration and processes results
fn calibration_for_core_pairs<'a>(
core_pairs: impl Iterator<Item = (usize, usize)> + Clone,
pages: impl Iterator<Item = &'a [u8]>,
) -> Result<HashMap<AV, (ErrorPrediction, HashMap<SP, ThresholdError>)>, FlushAndFlushError>
{
let core_per_socket = find_core_per_socket();
let operations = [
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss",
display_name: "clflush miss",
},
];
const HIT_INDEX: usize = 0;
const MISS_INDEX: usize = 1;
let mut calibrate_results2t_vec = Vec::new();
let slicing = match get_cache_slicing(core_per_socket) {
Some(s) => s,
None => {
return Err(FlushAndFlushError::NoSlicing);
}
};
let h = |addr: usize| slicing.hash(addr).unwrap();
for page in pages {
// FIXME Cache line size is magic
let mut r = unsafe {
calibrate_fixed_freq_2_thread(
&page[0] as *const u8,
64,
page.len() as isize,
&mut core_pairs.clone(),
&operations,
CalibrationOptions {
hist_params: HistParams {
bucket_number: CFLUSH_BUCKET_NUMBER,
bucket_size: CFLUSH_BUCKET_SIZE,
iterations: CFLUSH_NUM_ITER,
},
verbosity: Verbosity::NoOutput,
optimised_addresses: true,
},
core_per_socket,
)
};
calibrate_results2t_vec.append(&mut r);
}
let analysis: HashMap<ASVP, ThresholdError> = calibration_result_to_ASVP(
calibrate_results2t_vec,
|cal_1t_res| {
let e = ErrorPredictions::predict_errors(HistogramCumSum::from_calibrate(
cal_1t_res, HIT_INDEX, MISS_INDEX,
));
PotentialThresholds::minimizing_total_error(e)
.median()
.unwrap()
},
&h,
)
.map_err(|e| FlushAndFlushError::Nix(e))?;
let asvp_best_av_errors: HashMap<AV, (ErrorPrediction, HashMap<SP, ThresholdError>)> =
accumulate(
analysis,
|asvp: ASVP| AV {
attacker: asvp.attacker,
victim: asvp.victim,
},
|| (ErrorPrediction::default(), HashMap::new()),
|acc: &mut (ErrorPrediction, HashMap<SP, ThresholdError>),
threshold_error,
asvp: ASVP,
av| {
assert_eq!(av.attacker, asvp.attacker);
assert_eq!(av.victim, asvp.victim);
let sp = SP {
slice: asvp.slice,
page: asvp.page,
};
acc.0 += threshold_error.error;
acc.1.insert(sp, threshold_error);
},
);
Ok(asvp_best_av_errors)
}
fn new_with_core_pairs(
core_pairs: impl Iterator<Item = (usize, usize)> + Clone,
) -> Result<(Self, usize, usize), FlushAndFlushError> {
let m = MMappedMemory::new(PAGE_LEN, false);
let array: &[u8] = m.slice();
let mut res = Self::calibration_for_core_pairs(core_pairs, vec![array].into_iter())?;
let mut best_error_rate = 1.0;
let mut best_av = Default::default();
// Select the proper core
for (av, (global_error_pred, thresholds)) in res.iter() {
if global_error_pred.error_rate() < best_error_rate {
best_av = *av;
best_error_rate = global_error_pred.error_rate();
}
}
Self::new(best_av.attacker, best_av.victim)
.map(|this| (this, best_av.attacker, best_av.victim))
// Set no threshold as calibrated on local array that will get dropped.
}
pub fn new_any_single_core() -> Result<(Self, CpuSet, usize), FlushAndFlushError> {
// Generate core iterator
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
core_pairs.push((i, i));
}
}
// Generate all single core pairs
// Call out to private constructor that takes a core pair list, determines best and makes the choice.
// The private constructor will set the correct affinity for main (attacker thread)
Self::new_with_core_pairs(core_pairs.into_iter()).map(|(channel, attacker, victim)| {
assert_eq!(attacker, victim);
(channel, old, attacker)
})
}
pub fn new_any_two_core(
distinct: bool,
) -> Result<(Self, CpuSet, usize, usize), FlushAndFlushError> {
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
for j in 0..CpuSet::count() {
if old.is_set(j).unwrap() {
if i != j || !distinct {
core_pairs.push((i, j));
}
}
}
}
}
Self::new_with_core_pairs(core_pairs.into_iter()).map(|(channel, attacker, victim)| {
if distinct {
assert_ne!(attacker, victim);
}
(channel, old, attacker, victim)
})
}
fn get_slice(&self, addr: *const u8) -> Slice {
self.slicing.hash(addr as usize).unwrap()
}
pub fn set_cores(&mut self, attacker: usize, victim: usize) -> Result<(), FlushAndFlushError> {
let old_attacker = self.attacker_core;
let old_victim = self.victim_core;
self.attacker_core = attacker;
self.victim_core = victim;
let pages: Vec<VPN> = self
.thresholds
.keys()
.map(|sp: &SP| sp.page)
//.copied()
.collect();
match self.recalibrate(pages) {
Ok(()) => Ok(()),
Err(e) => {
self.attacker_core = old_attacker;
self.victim_core = old_victim;
Err(e)
}
}
}
fn recalibrate(
&mut self,
pages: impl IntoIterator<Item = VPN>,
) -> Result<(), FlushAndFlushError> {
// unset readiness status.
// Call calibration with core pairs with a single core pair
// Use results \o/ (or error out)
self.addresses_ready.clear();
// Fixme refactor in depth core pairs to make explicit main vs helper.
let core_pairs = vec![(self.attacker_core, self.victim_core)];
let pages: HashSet<&[u8]> = self
.thresholds
.keys()
.map(|sp: &SP| unsafe { &*slice_from_raw_parts(sp.page as *const u8, PAGE_LEN) })
.collect();
let mut res = Self::calibration_for_core_pairs(core_pairs.into_iter(), pages.into_iter())?;
assert_eq!(res.keys().count(), 1);
self.thresholds = res
.remove(&AV {
attacker: self.attacker_core,
victim: self.victim_core,
})
.unwrap()
.1;
Ok(())
}
unsafe fn test_impl<'a, 'b, 'c>(
&'a self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
limit: u32,
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError> {
let mut result = Vec::new();
let mut tmp = Vec::new();
let mut i = 0;
for addr in addresses {
i += 1;
let t = unsafe { only_flush(*addr) };
tmp.push((addr, t));
if i == limit {
break;
}
}
for (addr, time) in tmp {
if !self.addresses_ready.contains(&addr) {
return Err(AddressNotReady(*addr));
}
let vpn: VPN = (*addr as usize) & (!0xfff); // FIXME
let slice = self.get_slice(*addr);
let threshold_error = &self.thresholds[&SP { slice, page: vpn }];
// refactor this into a struct threshold method ?
if threshold_error.threshold.is_hit(time) {
result.push((*addr, CacheStatus::Hit))
} else {
result.push((*addr, CacheStatus::Miss))
}
}
Ok(result)
}
unsafe fn prepare_impl<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
limit: u32,
) -> Result<(), SideChannelError> {
use core::arch::x86_64 as arch_x86;
let mut i = 0;
let addresses_cloned = addresses.clone();
for addr in addresses_cloned {
i += 1;
let vpn: VPN = get_vpn(*addr);
let slice = self.get_slice(*addr);
if self.addresses_ready.contains(&addr) {
continue;
}
if !self.thresholds.contains_key(&SP { slice, page: vpn }) {
return Err(AddressNotCalibrated(*addr));
}
if i == limit {
break;
}
}
i = 0;
for addr in addresses {
i += 1;
unsafe { flush(*addr) };
//println!("{:p}", *addr);
self.addresses_ready.insert(*addr);
if i == limit {
break;
}
}
unsafe { arch_x86::_mm_mfence() };
Ok(())
}
}
impl Debug for FlushAndFlush {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("FlushAndFlush")
.field("thresholds", &self.thresholds)
.field("addresses_ready", &self.addresses_ready)
.field("slicing", &self.slicing)
.finish()
}
}
impl CoreSpec for FlushAndFlush {
fn main_core(&self) -> CpuSet {
let mut main = CpuSet::new();
main.set(self.attacker_core);
main
}
fn helper_core(&self) -> CpuSet {
let mut helper = CpuSet::new();
helper.set(self.victim_core);
helper
}
}
use cache_side_channel::CacheStatus::Hit;
use cache_utils::calibration::cum_sum;
use cache_utils::mmap::MMappedMemory;
use covert_channels_evaluation::{BitIterator, CovertChannel};
use std::ptr::slice_from_raw_parts;
impl MultipleAddrCacheSideChannel for FlushAndFlush {
const MAX_ADDR: u32 = 3;
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError> {
unsafe { self.test_impl(addresses, Self::MAX_ADDR) }
}
unsafe fn prepare<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<(), SideChannelError> {
unsafe { self.prepare_impl(addresses, Self::MAX_ADDR) }
}
fn victim(&mut self, operation: &dyn Fn()) {
operation(); // TODO use a different helper core ?
}
// TODO
// To split into several functions
// Calibration
// Make predictions out of results -> probably in cache_utils
// Compute Threshold & Error
// Compute stats from (A,V,S,P) into (A,V), or other models -> in cache_utils
// Use a generic function ? fn <T> reduce (HashMap<(A,S,V,P), Result>, Fn (A,S,V,P) -> T, a reduction method)
// Determine best core (A,V) amongst options -> in here
// Extract results out of calibration -> in self.calibrate
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
let core_pair = vec![(self.attacker_core, self.victim_core)];
let pages = addresses
.into_iter()
.map(|addr: *const u8| unsafe {
&*slice_from_raw_parts(get_vpn(addr) as *const u8, PAGE_LEN)
})
.collect::<HashSet<&[u8]>>();
let mut res =
match Self::calibration_for_core_pairs(core_pair.into_iter(), pages.into_iter()) {
Err(e) => {
return Err(ChannelFatalError::Oops);
}
Ok(r) => r,
};
assert_eq!(res.keys().count(), 1);
let t = res
.remove(&AV {
attacker: self.attacker_core,
victim: self.victim_core,
})
.unwrap()
.1;
for (sp, threshold) in t {
//println!("Inserting sp: {:?} => Threshold: {:?}", sp, threshold);
self.thresholds.insert(sp, threshold);
}
Ok(())
}
}
unsafe impl Send for FlushAndFlush {}
unsafe impl Sync for FlushAndFlush {}
impl CovertChannel for SingleFlushAndFlush {
const BIT_PER_PAGE: usize = 1; //PAGE_SHIFT - 6; // FIXME MAGIC cache line size
unsafe fn transmit<'a>(&self, page: *const u8, bits: &mut BitIterator<'a>) {
let mut offset = 0;
let page = self.0.preferred_address[&page];
if let Some(b) = bits.next() {
//println!("Transmitting {} on page {:p}", b, page);
if b {
unsafe { only_reload(page) };
} else {
unsafe { only_flush(page) };
}
}
}
unsafe fn receive(&self, page: *const u8) -> Vec<bool> {
let addresses: Vec<*const u8> = vec![self.0.preferred_address[&page]];
let r = unsafe { self.0.test_impl(&mut addresses.iter(), u32::max_value()) };
match r {
Err(e) => panic!("{:?}", e),
Ok(status_vec) => {
assert_eq!(status_vec.len(), 1);
let received = status_vec[0].1 == Hit;
return vec![received];
}
}
}
unsafe fn ready_page(&mut self, page: *const u8) {
let r = unsafe { self.0.calibrate(vec![page].into_iter()) }.unwrap();
let mut best_error_rate = 1.0;
let mut best_slice = 0;
for (sp, threshold_error) in self
.0
.thresholds
.iter()
.filter(|kv| kv.0.page == page as VPN)
{
if threshold_error.error.error_rate() < best_error_rate {
best_error_rate = threshold_error.error.error_rate();
best_slice = sp.slice;
}
}
for i in 0..PAGE_LEN {
let addr = unsafe { page.offset(i as isize) };
if self.0.get_slice(addr) == best_slice {
self.0.preferred_address.insert(page, addr);
let r = unsafe {
self.0
.prepare_impl(&mut vec![addr].iter(), u32::max_value())
}
.unwrap();
break;
}
}
}
}
impl CovertChannel for FlushAndFlush {
const BIT_PER_PAGE: usize = 1; //PAGE_SHIFT - 6; // FIXME MAGIC cache line size
unsafe fn transmit<'a>(&self, page: *const u8, bits: &mut BitIterator<'a>) {
let mut offset = 0;
if Self::BIT_PER_PAGE == 1 {
let page = self.preferred_address[&page];
if let Some(b) = bits.next() {
//println!("Transmitting {} on page {:p}", b, page);
if b {
unsafe { only_reload(page) };
} else {
unsafe { only_flush(page) };
}
}
} else {
for i in 0..Self::BIT_PER_PAGE {
if let Some(b) = bits.next() {
if b {
offset += 1 << i + 6; // Magic FIXME cache line size
}
}
}
unsafe { maccess(page.offset(offset as isize)) };
}
}
unsafe fn receive(&self, page: *const u8) -> Vec<bool> {
if Self::BIT_PER_PAGE == 1 {
let addresses: Vec<*const u8> = vec![self.preferred_address[&page]];
let r = unsafe { self.test_impl(&mut addresses.iter(), u32::max_value()) };
match r {
Err(e) => panic!("{:?}", e),
Ok(status_vec) => {
assert_eq!(status_vec.len(), 1);
let received = status_vec[0].1 == Hit;
//println!("Received {} on page {:p}", received, page);
return vec![received];
}
}
} else {
let addresses = (0..PAGE_LEN)
.step_by(64)
.map(|o| unsafe { page.offset(o as isize) })
.collect::<HashSet<*const u8>>();
let r = unsafe { self.test_impl(&mut addresses.iter(), u32::max_value()) };
match r {
Err(e) => panic!("{:?}", e),
Ok(status_vec) => {
for (addr, status) in status_vec {
if status == Hit {
let offset = unsafe { addr.offset_from(page) } >> 6; // Fixme cache line size magic
let mut res = Vec::new();
for i in 0..Self::BIT_PER_PAGE {
res.push((offset & (1 << i)) != 0);
}
return res;
}
}
}
}
vec![false; Self::BIT_PER_PAGE]
}
}
unsafe fn ready_page(&mut self, page: *const u8) {
let r = unsafe { self.calibrate(vec![page].into_iter()) }.unwrap();
if Self::BIT_PER_PAGE == 1 {
let mut best_error_rate = 1.0;
let mut best_slice = 0;
for (sp, threshold_error) in
self.thresholds.iter().filter(|kv| kv.0.page == page as VPN)
{
if threshold_error.error.error_rate() < best_error_rate {
best_error_rate = threshold_error.error.error_rate();
best_slice = sp.slice;
}
}
for i in 0..PAGE_LEN {
let addr = unsafe { page.offset(i as isize) };
if self.get_slice(addr) == best_slice {
self.preferred_address.insert(page, addr);
let r = unsafe { self.prepare_impl(&mut vec![addr].iter(), u32::max_value()) }
.unwrap();
break;
}
}
} else {
let addresses = (0..PAGE_LEN)
.step_by(64)
.map(|o| unsafe { page.offset(o as isize) })
.collect::<Vec<*const u8>>();
//println!("{:#?}", addresses);
let r = unsafe { self.prepare_impl(&mut addresses.iter(), u32::max_value()) }.unwrap();
}
}
}
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
}