dendrobates-t-azureus/cache_utils/2T-opt-2020-07-31/analyse_medians.py
2020-08-04 14:34:45 +02:00

133 lines
4.3 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sys import exit
import numpy as np
from scipy import optimize
import sys
# TODO
# sys.argv[1] should be the root
# with root-result_lite.csv.bz2 the result
# and .stats.csv
# root.slices a slice mapping - done
# root.cores a core + socket mapping - done -> move to analyse csv ?
#
# Facet plot with actual dot cloud + plot the linear regression
# each row is a slice
# each row is an origin core
# each column a helper core if applicable
stats = pd.read_csv(sys.argv[1] + ".stats.csv",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
"hash": np.int8,
# "time": np.int16,
"clflush_remote_hit": np.float64,
"clflush_shared_hit": np.float64,
# "clflush_miss_f": np.int32,
# "clflush_local_hit_f": np.int32,
"clflush_miss_n": np.float64,
"clflush_local_hit_n": np.float64,
# "reload_miss": np.int32,
# "reload_remote_hit": np.int32,
# "reload_shared_hit": np.int32,
# "reload_local_hit": np.int32
}
)
slice_mapping = pd.read_csv(sys.argv[1] + ".slices.csv")
core_mapping = pd.read_csv(sys.argv[1] + ".cores.csv")
print(core_mapping.to_string())
print(slice_mapping.to_string())
print("core {} is mapped to '{}'".format(4, repr(core_mapping.iloc[4])))
min_time_miss = stats["clflush_miss_n"].min()
max_time_miss = stats["clflush_miss_n"].max()
def remap_core(key):
def remap(core):
remapped = core_mapping.iloc[core]
return remapped[key]
return remap
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
stats["helper_socket"] = stats["helper_core"].apply(remap_core("socket"))
stats["helper_core_fixed"] = stats["helper_core"].apply(remap_core("core"))
stats["helper_ht"] = stats["helper_core"].apply(remap_core("hthread"))
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
stats["slice_group"] = stats["hash"].apply(lambda h: slice_mapping.iloc[h])
graph_lower_miss = int((min_time_miss // 10) * 10)
graph_upper_miss = int(((max_time_miss + 9) // 10) * 10)
print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
g = sns.FacetGrid(stats, row="main_core_fixed")
g.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
g2 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g2.map(sns.scatterplot, 'helper_core_fixed', 'clflush_remote_hit', color="r")
g3 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g3.map(sns.scatterplot, 'helper_core_fixed', 'clflush_shared_hit', color="y")
print(stats.head())
def miss_topology(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group + 1)
res = optimize.curve_fit(miss_topology, stats[["main_core_fixed", "slice_group"]], stats["clflush_miss_n"])
print(res)
def local_hit_topology(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
return C + h * abs(main_core - slice_group)
def remote_hit_topology_1(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group - helper_core)
def remote_hit_topology_2(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group - helper_core) + h * abs(helper_core - main_core)
def shared_hit_topology_1(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
# more ideas needed
plt.show()