dendrobates-t-azureus/cache_utils/2T-opt-2020-07-21-9b96280/analyse_csv.py
2020-09-22 14:27:52 +02:00

140 lines
3.7 KiB
Python

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sys import exit
import wquantiles as wq
import numpy as np
from functools import partial
import sys
def convert64(x):
return np.int64(int(x, base=16))
def convert8(x):
return np.int8(int(x, base=16))
df = pd.read_csv(sys.argv[1],
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
# "hash": np.int8,
"time": np.int16,
"clflush_remote_hit": np.int32,
"clflush_shared_hit": np.int32,
"clflush_miss_f": np.int32,
"clflush_local_hit_f": np.int32,
"clflush_miss_n": np.int32,
"clflush_local_hit_n": np.int32,
"reload_miss": np.int32,
"reload_remote_hit": np.int32,
"reload_shared_hit": np.int32,
"reload_local_hit": np.int32},
converters={'address': convert64, 'hash': convert8},
)
sample_columns = [
"clflush_remote_hit",
"clflush_shared_hit",
"clflush_miss_f",
"clflush_local_hit_f",
"clflush_miss_n",
"clflush_local_hit_n",
"reload_miss",
"reload_remote_hit",
"reload_shared_hit",
"reload_local_hit",
]
sample_flush_columns = [
"clflush_remote_hit",
"clflush_shared_hit",
"clflush_miss_f",
"clflush_local_hit_f",
"clflush_miss_n",
"clflush_local_hit_n",
]
print(df.columns)
#df["Hash"] = df["Addr"].apply(lambda x: (x >> 15)&0x3)
print(df.head())
print(df["hash"].unique())
min_time = df["time"].min()
max_time = df["time"].max()
q10s = [wq.quantile(df["time"], df[col], 0.1) for col in sample_flush_columns]
q90s = [wq.quantile(df["time"], df[col], 0.9) for col in sample_flush_columns]
graph_upper = int(((max(q90s) + 19) // 10) * 10)
graph_lower = int(((min(q10s) - 10) // 10) * 10)
# graph_lower = (min_time // 10) * 10
# graph_upper = ((max_time + 9) // 10) * 10
print("graphing between {}, {}".format(graph_lower, graph_upper))
df_main_core_0 = df[df["main_core"] == 0]
#df_helper_core_0 = df[df["helper_core"] == 0]
g = sns.FacetGrid(df_main_core_0, col="helper_core", row="hash", legend_out=True)
g2 = sns.FacetGrid(df, col="main_core", row="hash", legend_out=True)
colours = ["b", "r", "g", "y"]
def custom_hist(x, *y, **kwargs):
for (i, yi) in enumerate(y):
kwargs["color"] = colours[i]
sns.distplot(x, range(graph_lower, graph_upper), hist_kws={"weights": yi, "histtype":"step"}, kde=False, **kwargs)
# Color convention here :
# Blue = miss
# Red = Remote Hit
# Green = Local Hit
# Yellow = Shared Hit
g.map(custom_hist, "time", "clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit")
g2.map(custom_hist, "time", "clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit")
# g.map(sns.distplot, "time", hist_kws={"weights": df["clflush_hit"]}, kde=False)
plt.show()
#plt.figure()
exit(0)
def stat(x, key):
return wq.median(x["Time"], x[key])
miss = df.groupby(["Core", "Hash"]).apply(stat, "ClflushMiss")
stats = miss.reset_index()
stats.columns = ["Core", "Hash", "Miss"]
hit = df.groupby(["Core", "Hash"]).apply(stat, "ClflushHit")
stats["Hit"] = hit.values
print(stats.to_string())
g = sns.FacetGrid(stats, row="Core")
g.map(sns.distplot, 'Miss', bins=range(100, 480), color="r")
g.map(sns.distplot, 'Hit', bins=range(100, 480))
plt.show()
#stats["clflush_miss_med"] = stats[[0]].apply(lambda x: x["miss_med"])
#stats["clflush_hit_med"] = stats[[0]].apply(lambda x: x["hit_med"])
#del df[[0]]
#print(hit.to_string(), miss.to_string())
# test = pd.DataFrame({"value" : [0, 5], "weight": [5, 1]})
# plt.figure()
# sns.distplot(test["value"], hist_kws={"weights": test["weight"]}, kde=False)
exit(0)