dendrobates-t-azureus/cache_utils/analyse_csv.py
augustin64 4817065712 Remove tikzplotlib dependancy
Remove gmpy2 dependancy
Fix numpy conversion warnings
2024-06-04 17:00:33 +02:00

236 lines
7.1 KiB
Python

# SPDX-FileCopyrightText: 2021 Guillaume DIDIER
#
# SPDX-License-Identifier: Apache-2.0
# SPDX-License-Identifier: MIT
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#import tikzplotlib
from sys import exit
import wquantiles as wq
import numpy as np
from functools import partial
import sys
# For cyber cobay sanity check :
# from gmpy2 import popcount
def popcount(x):
return x.bit_count()
functions_i9_9900 = [
0b1111111111010101110101010001000000,
0b0110111110111010110001001000000000,
0b1111111000011111110010110000000000]
def complex_hash(addr):
r = 0
for f in reversed(functions_i9_9900):
r <<= 1
r |= (popcount(f & addr) & 1)
return r
def convert64(x):
return np.int64(int(x, base=16))
def convert8(x):
return np.array(int(x, base=16)).astype(np.int64)
# return np.int8(int(x, base=16))
df = pd.read_csv(sys.argv[1] + "-results_lite.csv.bz2",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
# "hash": np.int8,
"time": np.int16,
"clflush_remote_hit": np.int32,
"clflush_shared_hit": np.int32,
"clflush_miss_f": np.int32,
"clflush_local_hit_f": np.int32,
"clflush_miss_n": np.int32,
"clflush_local_hit_n": np.int32,
"reload_miss": np.int32,
"reload_remote_hit": np.int32,
"reload_shared_hit": np.int32,
"reload_local_hit": np.int32},
converters={'address': convert64, 'hash': convert8},
)
sample_columns = [
"clflush_remote_hit",
"clflush_shared_hit",
"clflush_miss_f",
"clflush_local_hit_f",
"clflush_miss_n",
"clflush_local_hit_n",
"reload_miss",
"reload_remote_hit",
"reload_shared_hit",
"reload_local_hit",
]
sample_flush_columns = [
"clflush_remote_hit",
"clflush_shared_hit",
"clflush_miss_f",
"clflush_local_hit_f",
"clflush_miss_n",
"clflush_local_hit_n",
]
slice_mapping = pd.read_csv(sys.argv[1] + ".slices.csv")
core_mapping = pd.read_csv(sys.argv[1] + ".cores.csv")
def remap_core(key):
def remap(core):
remapped = core_mapping.iloc[core]
return remapped[key]
return remap
df["main_socket"] = df["main_core"].apply(remap_core("socket"))
df["main_core_fixed"] = df["main_core"].apply(remap_core("core"))
df["main_ht"] = df["main_core"].apply(remap_core("hthread"))
df["helper_socket"] = df["helper_core"].apply(remap_core("socket"))
df["helper_core_fixed"] = df["helper_core"].apply(remap_core("core"))
df["helper_ht"] = df["helper_core"].apply(remap_core("hthread"))
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
slice_remap = lambda h: slice_mapping["slice_group"].iloc[h]
df["slice_group"] = df["hash"].apply(slice_remap)
print(df.columns)
#df["Hash"] = df["Addr"].apply(lambda x: (x >> 15)&0x3)
addresses = df["address"].unique()
print(addresses)
print(*[bin(a) for a in addresses], sep='\n')
print(df.head())
print(df["hash"].unique())
min_time = df["time"].min()
max_time = df["time"].max()
q10s = [wq.quantile(df["time"], df[col], 0.1) for col in sample_flush_columns]
q90s = [wq.quantile(df["time"], df[col], 0.9) for col in sample_flush_columns]
graph_upper = int(((max(q90s) + 19) // 10) * 10)
graph_lower = int(((min(q10s) - 10) // 10) * 10)
# graph_lower = (min_time // 10) * 10
# graph_upper = ((max_time + 9) // 10) * 10
print("graphing between {}, {}".format(graph_lower, graph_upper))
df_main_core_0 = df[df["main_core"] == 0]
#df_helper_core_0 = df[df["helper_core"] == 0]
colours = ["b", "r", "g", "y"]
def custom_hist(x, *y, **kwargs):
for (i, yi) in enumerate(y):
kwargs["color"] = colours[i]
sns.distplot(x, range(graph_lower, graph_upper), hist_kws={"weights": yi, "histtype":"step"}, kde=False, **kwargs)
custom_hist(df["time"], df["clflush_miss_n"], df["clflush_remote_hit"])
#tikzplotlib.save("fig-hist-all.tex")#, axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plt.show()
attacker = 2
victim = 7
slice = 14
df_ax_vx_sx = df[(df["hash"] == slice) & (df["main_core"] == attacker) & (df["helper_core"] == victim)]
custom_hist(df_ax_vx_sx["time"], df_ax_vx_sx["clflush_miss_n"], df_ax_vx_sx["clflush_remote_hit"])
#tikzplotlib.save("fig-hist-good-A{}V{}S{}.tex".format(attacker,victim,slice))#, axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plt.show()
attacker = 9
victim = 4
slice = 8
df_ax_vx_sx = df[(df["hash"] == slice) & (df["main_core"] == attacker) & (df["helper_core"] == victim)]
custom_hist(df_ax_vx_sx["time"], df_ax_vx_sx["clflush_miss_n"], df_ax_vx_sx["clflush_remote_hit"])
#tikzplotlib.save("fig-hist-bad-A{}V{}S{}.tex".format(attacker,victim,slice))#, axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plt.show()
g = sns.FacetGrid(df_main_core_0, col="helper_core", row="hash", legend_out=True)
g2 = sns.FacetGrid(df, col="main_core", row="hash", legend_out=True)
# Color convention here :
# Blue = miss
# Red = Remote Hit
# Green = Local Hit
# Yellow = Shared Hit
g.map(custom_hist, "time", "clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit")
g2.map(custom_hist, "time", "clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit")
# g.map(sns.distplot, "time", hist_kws={"weights": df["clflush_hit"]}, kde=False)
#plt.show()
#plt.figure()
#df_mcf6 = df[df["main_core_fixed"] == 6]
#df_mcf6_slg7 = df_mcf6[df_mcf6["slice_group"] == 7]
#g3 = sns.FacetGrid(df_mcf6_slg7, row="helper_core_fixed", col="main_ht")
#g3.map(custom_hist, "time", "clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit")
#g4 = sns.FacetGrid(df_mcf6_slg7, row="helper_core_fixed", col="helper_ht")
g#4.map(custom_hist, "time", "clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit")
def stat(x, key):
return wq.median(x["time"], x[key])
miss = df.groupby(["main_core", "helper_core", "hash"]).apply(stat, "clflush_miss_n")
hit_remote = df.groupby(["main_core", "helper_core", "hash"]).apply(stat, "clflush_remote_hit")
hit_local = df.groupby(["main_core", "helper_core", "hash"]).apply(stat, "clflush_local_hit_n")
hit_shared = df.groupby(["main_core", "helper_core", "hash"]).apply(stat, "clflush_shared_hit")
stats = miss.reset_index()
stats.columns = ["main_core", "helper_core", "hash", "clflush_miss_n"]
stats["clflush_remote_hit"] = hit_remote.values
stats["clflush_local_hit_n"] = hit_local.values
stats["clflush_shared_hit"] = hit_shared.values
stats.to_csv(sys.argv[1] + ".stats.csv", index=False)
#print(stats.to_string())
plt.show()
exit(0)
g = sns.FacetGrid(stats, row="Core")
g.map(sns.distplot, 'Miss', bins=range(100, 480), color="r")
g.map(sns.distplot, 'Hit', bins=range(100, 480))
plt.show()
#stats["clflush_miss_med"] = stats[[0]].apply(lambda x: x["miss_med"])
#stats["clflush_hit_med"] = stats[[0]].apply(lambda x: x["hit_med"])
#del df[[0]]
#print(hit.to_string(), miss.to_string())
# test = pd.DataFrame({"value" : [0, 5], "weight": [5, 1]})
# plt.figure()
# sns.distplot(test["value"], hist_kws={"weights": test["weight"]}, kde=False)
exit(0)