460 lines
13 KiB
Python
460 lines
13 KiB
Python
# SPDX-FileCopyrightText: 2021 Guillaume DIDIER
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-License-Identifier: MIT
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import warnings
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
from scipy import optimize
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
warnings.filterwarnings("ignore")
|
|
print("warnings are filtered, enable them back if you are having some trouble")
|
|
|
|
# TODO
|
|
# args.path should be the root
|
|
# with root-result_lite.csv.bz2 the result
|
|
# and .stats.csv
|
|
# root.slices a slice mapping - done
|
|
# root.cores a core + socket mapping - done -> move to analyse csv ?
|
|
#
|
|
# Facet plot with actual dot cloud + plot the linear regression
|
|
# each row is a slice
|
|
# each row is an origin core
|
|
# each column a helper core if applicable
|
|
|
|
parser = argparse.ArgumentParser(
|
|
prog=sys.argv[0],
|
|
)
|
|
|
|
parser.add_argument("path", help="Path to the experiment files")
|
|
|
|
parser.add_argument(
|
|
"--no-plot",
|
|
dest="no_plot",
|
|
action="store_true",
|
|
default=False,
|
|
help="No visible plot (save figures to files)",
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--rslice",
|
|
dest="rslice",
|
|
action="store_true",
|
|
default=False,
|
|
help="Create slice{} directories with segmented grid",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
img_dir = os.path.dirname(args.path) + "/figs/"
|
|
os.makedirs(img_dir, exist_ok=True)
|
|
|
|
assert os.path.exists(args.path + ".stats.csv")
|
|
assert os.path.exists(args.path + ".slices.csv")
|
|
assert os.path.exists(args.path + ".cores.csv")
|
|
|
|
stats = pd.read_csv(
|
|
args.path + ".stats.csv",
|
|
dtype={
|
|
"main_core": np.int8,
|
|
"helper_core": np.int8,
|
|
# "address": int,
|
|
"hash": np.int8,
|
|
# "time": np.int16,
|
|
"clflush_remote_hit": np.float64,
|
|
"clflush_shared_hit": np.float64,
|
|
# "clflush_miss_f": np.int32,
|
|
# "clflush_local_hit_f": np.int32,
|
|
"clflush_miss_n": np.float64,
|
|
"clflush_local_hit_n": np.float64,
|
|
# "reload_miss": np.int32,
|
|
# "reload_remote_hit": np.int32,
|
|
# "reload_shared_hit": np.int32,
|
|
# "reload_local_hit": np.int32
|
|
},
|
|
)
|
|
|
|
slice_mapping = pd.read_csv(args.path + ".slices.csv")
|
|
core_mapping = pd.read_csv(args.path + ".cores.csv")
|
|
|
|
# print("core mapping:\n", core_mapping.to_string())
|
|
# print("slice mapping:\n", slice_mapping.to_string())
|
|
|
|
# print("core {} is mapped to '{}'".format(4, repr(core_mapping.iloc[4])))
|
|
|
|
min_time_miss = stats["clflush_miss_n"].min()
|
|
max_time_miss = stats["clflush_miss_n"].max()
|
|
|
|
|
|
def remap_core(key):
|
|
def remap(core):
|
|
remapped = core_mapping.iloc[core]
|
|
return remapped[key]
|
|
|
|
return remap
|
|
|
|
|
|
def plot(filename, g=None):
|
|
if args.no_plot:
|
|
if g is not None:
|
|
g.savefig(img_dir + filename)
|
|
else:
|
|
plt.savefig(img_dir + filename)
|
|
# tikzplotlib.save(
|
|
# img_dir+filename+".tex",
|
|
# axis_width=r'0.175\textwidth',
|
|
# axis_height=r'0.25\textwidth'
|
|
# )
|
|
print(filename, "saved")
|
|
plt.close()
|
|
plt.show()
|
|
|
|
|
|
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
|
|
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
|
|
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
|
|
stats["helper_socket"] = stats["helper_core"].apply(remap_core("socket"))
|
|
stats["helper_core_fixed"] = stats["helper_core"].apply(remap_core("core"))
|
|
stats["helper_ht"] = stats["helper_core"].apply(remap_core("hthread"))
|
|
|
|
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
|
|
|
|
stats["slice_group"] = stats["hash"].apply(
|
|
lambda h: slice_mapping["slice_group"].iloc[h]
|
|
)
|
|
|
|
graph_lower_miss = int((min_time_miss // 10) * 10)
|
|
graph_upper_miss = int(((max_time_miss + 9) // 10) * 10)
|
|
|
|
# print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
|
|
|
|
|
|
# also explains remote
|
|
# shared needs some thinking as there is something weird happening there.
|
|
|
|
#
|
|
# M 0 1 2 3 4 5 6 7
|
|
#
|
|
|
|
|
|
# print(stats.head())
|
|
|
|
num_core = len(stats["main_core_fixed"].unique())
|
|
# print("Found {}".format(num_core))
|
|
|
|
|
|
def miss_topology(main_core_fixed, slice_group, C, h):
|
|
return C + h * abs(main_core_fixed - slice_group) + h * abs(slice_group + 1)
|
|
|
|
|
|
def miss_topology_df(x, C, h):
|
|
func = lambda x, C, h: miss_topology(x["main_core_fixed"], x["slice_group"], C, h)
|
|
return x.apply(func, args=(C, h), axis=1)
|
|
|
|
|
|
memory = -1
|
|
gpu_if_any = num_core
|
|
|
|
|
|
def exclusive_hit_topology_gpu(main_core, slice_group, helper_core, C, h1, h2):
|
|
round_trip = gpu_if_any - memory
|
|
|
|
if slice_group <= num_core / 2:
|
|
# send message towards higher cores first
|
|
if helper_core < slice_group:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(round_trip - (helper_core - memory))
|
|
)
|
|
else:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(helper_core - slice_group)
|
|
)
|
|
else:
|
|
# send message toward lower cores first
|
|
if helper_core > slice_group:
|
|
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
|
|
else:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(helper_core - slice_group)
|
|
)
|
|
return r
|
|
|
|
|
|
def exclusive_hit_topology_gpu_df(x, C, h1, h2):
|
|
def func(x, C, h1, h2):
|
|
return exclusive_hit_topology_gpu(
|
|
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
|
|
)
|
|
|
|
return x.apply(func, args=(C, h1, h2), axis=1)
|
|
|
|
|
|
def exclusive_hit_topology_gpu2(main_core, slice_group, helper_core, C, h1, h2):
|
|
round_trip = gpu_if_any + 1 - memory
|
|
|
|
if slice_group <= num_core / 2:
|
|
# send message towards higher cores first
|
|
if helper_core < slice_group:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(round_trip - (helper_core - memory))
|
|
)
|
|
else:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(helper_core - slice_group)
|
|
)
|
|
else:
|
|
# send message toward lower cores first
|
|
if helper_core > slice_group:
|
|
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
|
|
else:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(helper_core - slice_group)
|
|
)
|
|
return r
|
|
|
|
|
|
def exclusive_hit_topology_gpu2_df(x, C, h1, h2):
|
|
def func(x, C, h1, h2):
|
|
return exclusive_hit_topology_gpu2(
|
|
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
|
|
)
|
|
|
|
return x.apply(func, args=(C, h1, h2), axis=1)
|
|
|
|
|
|
# unlikely
|
|
def exclusive_hit_topology_nogpu(main_core, slice_group, helper_core, C, h1, h2):
|
|
round_trip = (num_core - 1) - memory
|
|
|
|
if slice_group <= num_core / 2:
|
|
# send message towards higher cores first
|
|
if helper_core < slice_group:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(round_trip - (helper_core - memory))
|
|
)
|
|
else:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(helper_core - slice_group)
|
|
)
|
|
else:
|
|
# send message toward lower cores first
|
|
if helper_core > slice_group:
|
|
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
|
|
else:
|
|
r = (
|
|
C
|
|
+ h1 * abs(main_core - slice_group)
|
|
+ h2 * abs(helper_core - slice_group)
|
|
)
|
|
return r
|
|
|
|
|
|
def exclusive_hit_topology_nogpu_df(x, C, h1, h2):
|
|
def func(x, C, h1, h2):
|
|
return exclusive_hit_topology_nogpu(
|
|
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
|
|
)
|
|
|
|
return x.apply(func, args=(C, h1, h2), axis=1)
|
|
|
|
|
|
def remote_hit_topology_2(x, C, h):
|
|
main_core = x["main_core_fixed"]
|
|
slice_group = x["slice_group"]
|
|
helper_core = x["helper_core_fixed"]
|
|
return (
|
|
C
|
|
+ h * abs(main_core - slice_group)
|
|
+ h * abs(slice_group - helper_core)
|
|
+ h * abs(helper_core - main_core)
|
|
)
|
|
|
|
|
|
def shared_hit_topology_1(x, C, h):
|
|
main_core = x["main_core_fixed"]
|
|
slice_group = x["slice_group"]
|
|
helper_core = x["helper_core_fixed"]
|
|
return (
|
|
C
|
|
+ h * abs(main_core - slice_group)
|
|
+ h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
|
|
)
|
|
|
|
|
|
def do_predictions(df):
|
|
res_miss = optimize.curve_fit(
|
|
miss_topology_df, df[["main_core_fixed", "slice_group"]], df["clflush_miss_n"]
|
|
)
|
|
# print("Miss topology:")
|
|
# print(res_miss)
|
|
|
|
res_gpu = optimize.curve_fit(
|
|
exclusive_hit_topology_gpu_df,
|
|
df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
|
|
df["clflush_remote_hit"],
|
|
)
|
|
# print("Exclusive hit topology (GPU):")
|
|
# print(res_gpu)
|
|
|
|
# res_gpu2 = optimize.curve_fit(
|
|
# exclusive_hit_topology_gpu2_df,
|
|
# df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
|
|
# df["clflush_remote_hit"]
|
|
# )
|
|
# print("Exclusive hit topology (GPU2):")
|
|
# print(res_gpu2)
|
|
|
|
# res_no_gpu = optimize.curve_fit(
|
|
# exclusive_hit_topology_nogpu_df,
|
|
# df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
|
|
# df["clflush_remote_hit"]
|
|
# )
|
|
# print("Exclusive hit topology (No GPU):")
|
|
# print(res_no_gpu)
|
|
|
|
df["predicted_miss"] = miss_topology_df(df, *(res_miss[0]))
|
|
|
|
# df["predicted_remote_hit_no_gpu"] = exclusive_hit_topology_nogpu_df(df, *(res_no_gpu[0]))
|
|
df["predicted_remote_hit_gpu"] = exclusive_hit_topology_gpu_df(df, *(res_gpu[0]))
|
|
# df["predicted_remote_hit_gpu2"] = exclusive_hit_topology_gpu_df(df, *(res_gpu2[0]))
|
|
|
|
df_A0 = df[df["main_core_fixed"] == 0]
|
|
figure_A0 = sns.FacetGrid(df_A0, col="slice_group")
|
|
figure_A0.map(sns.scatterplot, "helper_core_fixed", "clflush_remote_hit", color="r")
|
|
figure_A0.map(
|
|
sns.lineplot, "helper_core_fixed", "predicted_remote_hit_gpu", color="r"
|
|
)
|
|
figure_A0.set_titles(col_template="$S$ = {col_name}")
|
|
plot("medians_remote_hit.png")
|
|
|
|
g2 = sns.FacetGrid(df, row="main_core_fixed", col="slice_group")
|
|
g2.map(sns.scatterplot, "helper_core_fixed", "clflush_remote_hit", color="r")
|
|
g2.map(sns.lineplot, "helper_core_fixed", "predicted_remote_hit_gpu", color="r")
|
|
# g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu2', color="g")
|
|
# g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_no_gpu', color="g")
|
|
plot("medians_remote_hit_grid.png", g=g2)
|
|
|
|
|
|
def rslice():
|
|
for core in stats["main_core_fixed"].unique():
|
|
os.makedirs(img_dir + f"slices{core}", exist_ok=True)
|
|
for slice_ in stats["slice_group"].unique():
|
|
df = stats[
|
|
(stats["slice_group"] == slice_) & (stats["main_core_fixed"] == core)
|
|
]
|
|
fig = sns.scatterplot(
|
|
df, x="helper_core_fixed", y="clflush_remote_hit", color="r"
|
|
)
|
|
fig.set(title=f"main_core={core} slice={slice_}")
|
|
plt.savefig(img_dir + f"slices{core}/" + str(slice_) + ".png")
|
|
plt.close()
|
|
|
|
|
|
def facet_grid(
|
|
df, row, col, third,
|
|
draw_fn=sns.scatterplot,
|
|
shown=[
|
|
"clflush_shared_hit",
|
|
"clflush_remote_hit",
|
|
"clflush_local_hit_n",
|
|
"clflush_miss_n",
|
|
],
|
|
colors=["y", "r", "g", "b"],
|
|
title=None,
|
|
):
|
|
"""
|
|
Creates a facet grid showing all points
|
|
"""
|
|
grid = sns.FacetGrid(df, row=row, col=col)
|
|
|
|
for i, el in enumerate(shown):
|
|
grid.map(draw_fn, third, el, color=colors[i % len(colors)])
|
|
|
|
if title is not None:
|
|
plot(title, g=grid)
|
|
return grid
|
|
|
|
|
|
def all_facets(df, pre="", post="", *args, **kwargs):
|
|
"""
|
|
df : panda dataframe
|
|
pre, post: strings to add before and after the filename
|
|
"""
|
|
|
|
facet_grid(
|
|
df, "main_core_fixed", "helper_core_fixed", "slice_group",
|
|
title=f"{pre}facet_slice{post}.png", *args, **kwargs
|
|
)
|
|
facet_grid(
|
|
df, "helper_core_fixed", "slice_group", "main_core_fixed",
|
|
title=f"{pre}facet_main{post}.png", *args, **kwargs
|
|
)
|
|
facet_grid(
|
|
df, "slice_group", "main_core_fixed", "helper_core_fixed",
|
|
title=f"{pre}facet_helper{post}.png", *args, **kwargs
|
|
)
|
|
|
|
|
|
if args.rslice:
|
|
rslice()
|
|
|
|
# do_predictions(stats)
|
|
# all_facets(stats, "")
|
|
|
|
def do_facet(main: int, helper: int, line: bool):
|
|
df = stats.copy(deep=True)
|
|
|
|
print(f"Doing all facets {main}x{helper}")
|
|
filtered_df = stats[
|
|
(stats["main_core_fixed"] // (num_core / 2) == main)
|
|
& (stats["helper_core_fixed"] // (num_core / 2) == helper)
|
|
]
|
|
method = "line" if line else "pt"
|
|
all_facets(
|
|
filtered_df,
|
|
pre=f"hit_{method}_",
|
|
post=f"_m{main}h{helper}",
|
|
shown=["clflush_remote_hit"],
|
|
colors=["r"],
|
|
draw_fn=sns.lineplot if line else sns.scatterplot
|
|
)
|
|
all_facets(
|
|
filtered_df,
|
|
pre=f"miss_{method}_",
|
|
post=f"_m{main}h{helper}",
|
|
shown=["clflush_miss_n"],
|
|
colors=["b"],
|
|
draw_fn=sns.lineplot if line else sns.scatterplot
|
|
)
|
|
|
|
from multiprocessing import Pool
|
|
import itertools
|
|
|
|
with Pool(8) as pool:
|
|
pool.starmap(do_facet, itertools.product((0, 1), (0, 1), (True, False)))
|
|
|