using CSV using Plots pgfplotsx() # Generals TODO : Fix the ticks, add legends #eaps = [0,12,13,14] eaps = [0,12,13,14,15] len_eaps = length(eaps) types = ["S","U"] #types = ["S"] levels = [0,1,2] methods = ["SF", "SR", "FF"] plot_lock = ReentrantLock() slices_offset_0 = [0, 1, 2, 8, 14, 15, 30, 31, 32, 55, 56, 61, 62, 63] #slices_offset_0 = [] diff_slices_offset_0 = [0, 1, 2, 61, 62, 63] function make_name(eap, type, level) string("eap/eap-with-", eap, "-prefetcher.", type, level, ".csv") end all_file_names = fill((0,0,0,""), length(eaps), length(types), length(levels)) Threads.@threads for x in 1:len_eaps for (y,type) in enumerate(types) for (z,level) in enumerate(levels) all_file_names[x,y,z] = (x,y,z,make_name(eaps[x], type, level)) end end end #files = Matrix(CSV, length(eaps), length(types), length(levels)) files = Array{Union{Nothing, Tuple{Int64,Int64,Int64,CSV.File}},3}(nothing, length(eaps), length(types), length(levels)) Threads.@threads for f in all_file_names x = f[1] y = f[2] z = f[3] name = f[4] files[x,y,z] = (x,y,z,CSV.File(name)) end function graph_0(name, csv) data = [csv.Probe_FF_HR, csv.Probe_SR_HR, csv.Probe_SF_HR] x = range(0, 63) y = range(0, 2) function f(x, y) data[y + 1][x + 1] end lock(plot_lock) do graph = heatmap(x, y, f, yticks = ([0,1,2], ["FF", "SR", "SF"]), clims = (0, 1), xlabel="probe") savefig(graph, string("julia_", name, ".tikz")) savefig(graph, string("julia_", name, ".pdf")) end end # Todo double check if something better can be done wrt y names ? # TODO : # # - Split this function in a load data into square / cube structure and a plot function # - Refactor the code below to compute the various squares / cubes and then do the plots. # - Refactor the Slicing function too # - Create a custom diagonal slice function ? preamble_printed = false push!(PGFPlotsX.CUSTOM_PREAMBLE,raw"\newcommand{\gdfigurewidth}{150mm}") push!(PGFPlotsX.CUSTOM_PREAMBLE,raw"\newcommand{\gdfigureheight}{100mm}") function graph2d(name, matrix, xlabel, ylabel) x = range(0, 63) y = range(0, 63) function hmp2d(x, y) matrix[x + 1, y + 1] end lock(plot_lock) do graph = heatmap(x, y, hmp2d, minorgrid=true, height = raw"{\gdfigureheight}}, width = {{\gdfigurewidth}", xlabel = xlabel, ylabel = ylabel, c = :blues, extra_kwargs =:subplot) if !preamble_printed global preamble_printed = true print(Plots.pgfx_preamble(graph)) end savefig(graph, string(name, ".tikz")) savefig(graph, string(name, ".pdf")) end end function graph2dclims(name, matrix, clims, xlabel, ylabel) x = range(0, 63) y = range(0, 63) function hmp2d(x, y) matrix[x + 1, y + 1] end lock(plot_lock) do graph = heatmap(x, y, hmp2d, clims = clims, minorgrid=true, height = raw"{\gdfigureheight}}, width = {{\gdfigurewidth}", xlabel = xlabel, ylabel = ylabel, extra_kwargs =:subplot) savefig(graph, string(name, ".tikz")) savefig(graph, string(name, ".pdf")) end end function graph_1(basename, csv) # define the 2D arrays for the 3 heatmaps sf_probe_heatmap = fill(-1.0, 64, 64) sr_probe_heatmap = fill(-1.0, 64, 64) ff_probe_heatmap = fill(-1.0, 64, 64) # define 3 1D arrays to build the heatmap for average time of the first access in FF/SR and SF modes sf_offset_hit_time = fill(-1.0, 64) sr_offset_hit_time = fill(-1.0, 64) ff_offset_hit_time = fill(-1.0, 64) # iterates on the rows and fill in the 2D arrays. for row in csv offset = row.Offset_0 probe = row.ProbeAddr @assert sf_probe_heatmap[offset+1,probe+1] == -1.0 sf_probe_heatmap[offset + 1, probe + 1] = row.Probe_SF_HR sr_probe_heatmap[offset + 1, probe + 1] = row.Probe_SR_HR ff_probe_heatmap[offset + 1, probe + 1] = row.Probe_FF_HR if probe == 0 @assert sf_offset_hit_time[offset + 1] == -1.0 sf_offset_hit_time[offset + 1] = 0.0 end sf_offset_hit_time[offset + 1] += row.Offset_0_SF_HR sr_offset_hit_time[offset + 1] += row.Offset_0_SR_HR ff_offset_hit_time[offset + 1] += row.Offset_0_FF_HR if probe == 63 sf_offset_hit_time[offset + 1] /= 64 sr_offset_hit_time[offset + 1] /= 64 ff_offset_hit_time[offset + 1] /= 64 end end graph2dclims(string("julia_", basename, "_SF"), sf_probe_heatmap, (0,1), "i", "probe") graph2dclims(string("julia_", basename, "_SR"), sr_probe_heatmap, (0,1), "i", "probe") graph2dclims(string("julia_", basename, "_FF"), ff_probe_heatmap, (0,1), "i", "probe") data = [ff_offset_hit_time, sr_offset_hit_time, sf_offset_hit_time] x = range(0, 63) y = range(0, 2) function f(x, y) data[y + 1][x + 1] end lock(plot_lock) do graph = heatmap(x, y, f) savefig(graph, string("julia_", basename, "_Offset_0_HT.tikz")) savefig(graph, string("julia_", basename, "_Offset_0_HT.pdf")) end end function myfill(element, dimensions) res = fill(element, dimensions) res = map(x -> deepcopy(x), res) res end function cube_flatten_z(cubes) len = length(cubes) res = myfill(myfill(0.0,(64,64)), len) for k in range(1,64) Threads.@threads for i in range(1,64) for j in range(1,64) for l in range(1,len) res[l][i,j] += cubes[l][i,j,k] end end end end res end function slice_extract_x(cubes, slices) slice_length = length(slices) cube_length = length(cubes) res = myfill(myfill(myfill(0.0, (64, 64)), slice_length), cube_length) for i in range(1,64) for j in range(1,64) for (k,slice) in enumerate(slices) for l in range(1, cube_length) res[l][k][i, j] = cubes[l][slice+1, i, j] end end end end res end function graph_2(basename, csv) # First define a 3D cube for the resulting data ? sf_probe_heatmap = myfill(-1.0, (64, 64, 64)) sr_probe_heatmap = myfill(-1.0, (64, 64, 64)) ff_probe_heatmap = myfill(-1.0, (64, 64, 64)) # Fill in the 3D cube, then create the various slices and flattenings # Flattened Cube with x = first addr, y = second addr, compute the sum of prefetches ? # Grab a few random first adresses and look at them with x = second addr, y = probe addr # 0,1, 62,63 14, 15 plus one other depending on what appears # Also define and fill in a 2D matrix of offset1-offset2 hit time. sf_offset_hit_time = myfill(-1.0, (64, 64)) sr_offset_hit_time = myfill(-1.0, (64, 64)) ff_offset_hit_time = myfill(-1.0, (64, 64)) for row in csv probe = row.ProbeAddr offset_0 = row.Offset_0 offset_1 = row.Offset_1 @assert sf_probe_heatmap[offset_0 + 1, offset_1 + 1, probe + 1] == -1.0 sf_probe_heatmap[offset_0 + 1, offset_1 + 1, probe + 1] = row.Probe_SF_HR sr_probe_heatmap[offset_0 + 1, offset_1 + 1, probe + 1] = row.Probe_SR_HR ff_probe_heatmap[offset_0 + 1, offset_1 + 1, probe + 1] = row.Probe_FF_HR if probe == 0 @assert sf_offset_hit_time[offset_0 + 1, offset_1 + 1] == -1.0 sf_offset_hit_time[offset_0 + 1, offset_1 + 1] = 0.0 end sf_offset_hit_time[offset_0 + 1, offset_1 + 1] += row.Offset_1_SF_HR sr_offset_hit_time[offset_0 + 1, offset_1 + 1] += row.Offset_1_SR_HR ff_offset_hit_time[offset_0 + 1, offset_1 + 1] += row.Offset_1_FF_HR if probe == 63 sf_offset_hit_time[offset_0 + 1, offset_1 + 1] /= 64 sr_offset_hit_time[offset_0 + 1, offset_1 + 1] /= 64 ff_offset_hit_time[offset_0 + 1, offset_1 + 1] /= 64 end end allprobes = cube_flatten_z([sf_probe_heatmap, sr_probe_heatmap, ff_probe_heatmap]) sf_probe_heatmap_allprobes = allprobes[1] sr_probe_heatmap_allprobes = allprobes[2] ff_probe_heatmap_allprobes = allprobes[3] all_slices = slice_extract_x([sf_probe_heatmap, sr_probe_heatmap, ff_probe_heatmap], slices_offset_0) sf_probe_slices_heatmaps = all_slices[1] sr_probe_slices_heatmaps = all_slices[2] ff_probe_slices_heatmaps = all_slices[3] graph2d(string("julia_", basename, "_SF_AllProbes"), sf_probe_heatmap_allprobes, "i", "j") graph2d(string("julia_", basename, "_SR_AllProbes"), sr_probe_heatmap_allprobes, "i", "j") graph2d(string("julia_", basename, "_FF_AllProbes"), ff_probe_heatmap_allprobes, "i", "j") for (i, offset_0) in enumerate(slices_offset_0) print(offset_0) data = sf_probe_slices_heatmaps[i] graph2dclims(string("julia_", basename, "_SF_Slice_", offset_0),sf_probe_slices_heatmaps[i],(0,1), "j", "probe") graph2dclims(string("julia_", basename, "_SR_Slice_", offset_0),sr_probe_slices_heatmaps[i],(0,1), "j", "probe") graph2dclims(string("julia_", basename, "_FF_Slice_", offset_0),ff_probe_slices_heatmaps[i],(0,1), "j", "probe") end [sf_probe_heatmap, sr_probe_heatmap, ff_probe_heatmap] end Threads.@threads for file in files[:,:,1] name = string("eap_",eaps[file[1]],"_",types[file[2]],levels[file[3]]) graph_0(name, file[4]) print(string(name,"\n")) end Threads.@threads for file in files[:,:,2] name = string("eap_",eaps[file[1]],"_",types[file[2]],levels[file[3]]) graph_1(name, file[4]) print(string(name,"\n")) end cubes = fill(0.0, length(eaps), length(types), 3, 64, 64, 64) Threads.@threads for file in files[:,:,3] name = string("eap_",eaps[file[1]],"_",types[file[2]],levels[file[3]]) (sf,sr,ff) = graph_2(name, file[4]) cubes[file[1], file[2], 1, :, :, :] = sf cubes[file[1], file[2], 2, :, :, :] = sr cubes[file[1], file[2], 3, :, :, :] = ff print(string(name,"\n")) end print("Computing 14 union 13...") function cube_max(cubes_1, cubes_2) @assert size(cubes_1) == size(cubes_2) sizes = size(cubes_1) @assert length(sizes) == 5 res = fill(0.0, sizes) for i in range(1,sizes[1]) for j in range(1,sizes[2]) Threads.@threads for k in range(1,64) for l in range(1, 64) for m in range(1, 64) res[i,j,k,l,m] = max(cubes_1[i,j,k,l,m], cubes_2[i,j,k,l,m]) end end end end end res end index_0 = findfirst(isequal(0), eaps) index_12 = findfirst(isequal(12), eaps) index_13 = findfirst(isequal(13), eaps) index_14 = findfirst(isequal(14), eaps) cube_max_13_14 = cube_max(cubes[index_13,:,:,:,:,:], cubes[index_14,:,:,:,:,:]) function do_cubes(name, cubes) cube_list = [] index_list = [] for type in range(1,length(types)) for method in range(1,3) push!(cube_list, cubes[type,method,:,:,:]) push!(index_list, (type, method)) end end allgraphs = cube_flatten_z(cube_list) for (i,(type,method)) in enumerate(index_list) graph2d(string(name, "_", types[type], "2_", methods[method], "_AllProbes"), allgraphs[i], "i", "j") for slice in diff_slices_offset_0 graph2d(string(name,"_", types[type], "2_", methods[method], "_Slice_", slice), cubes[type, method, slice+1,:,:], "j", "probe") end end end graph_13_14 = @task begin do_cubes("julia_max_13_14", cube_max_13_14) cube_list = [] index_list = [] for type in range(1,length(types)) for method in range(1,3) push!(cube_list, cube_max_13_14[type,method,:,:,:]) push!(index_list, (type, method)) end end allgraphs = cube_flatten_z(cube_list) for (i,(type,method)) in enumerate(index_list) graph2d(string("julia_max_13_14_", types[type], "2_", methods[method], "_AllProbes"), allgraphs[i], "i", "j") end end schedule(graph_13_14) print(" OK\n") print("Computing Any difference between 0 and 12...") function cube_differences(cubes_1, cubes_2) @assert size(cubes_1) == size(cubes_2) sizes = size(cubes_1) @assert length(sizes) == 5 res = fill(0.0, sizes) for i in range(1,sizes[1]) for j in range(1,sizes[2]) Threads.@threads for k in range(1,64) for l in range(1, 64) for m in range(1, 64) res[i,j,k,l,m] = abs(cubes_1[i,j,k,l,m] - cubes_2[i,j,k,l,m]) end end end end end res end cube_diff_0_12 = cube_differences(cubes[index_0,:,:,:,:,:], cubes[index_12,:,:,:,:,:]) graph_0_12 = @task begin do_cubes("julia_diff_0_12", cube_diff_0_12) cube_list = [] index_list = [] for type in range(1,length(types)) for method in range(1,3) push!(cube_list, cube_diff_0_12[type,method,:,:,:]) push!(index_list, (type, method)) end end allgraphs = cube_flatten_z(cube_list) for (i,(type,method)) in enumerate(index_list) graph2d(string("julia_diff_0_12_", types[type], "2_", methods[method], "_AllProbes"), allgraphs[i], "i", "j") end end schedule(graph_0_12) print(" OK\n") print("Computing Differences between 12 and (13 union 14)...") cube_diff_12_1314 = cube_differences(cubes[index_0,:,:,:,:,:], cube_max_13_14) graph_12_1314 = @task begin do_cubes("julia_diff_12_1314", cube_diff_12_1314) cube_list = [] index_list = [] for type in range(1,length(types)) for method in range(1,3) push!(cube_list, cube_diff_12_1314[type,method,:,:,:]) push!(index_list, (type, method)) end end allgraphs = cube_flatten_z(cube_list) for (i,(type,method)) in enumerate(index_list) graph2d(string("julia_diff_12_1314", types[type], "2_", methods[method], "_AllProbes"), allgraphs[i], "i", "j") for slice in diff_slices_offset_0 end end end schedule(graph_12_1314) wait(graph_13_14) wait(graph_0_12) wait(graph_12_1314) print("done\n")