use x86_64::{ structures::paging::{ FrameAllocator, Mapper, OffsetPageTable, Page, PageTable, PhysFrame, Size4KiB, UnusedPhysFrame, }, PhysAddr, VirtAddr, }; use bootloader::bootinfo::MemoryMap; use bootloader::bootinfo::MemoryRegionType; /// Initialize a new OffsetPageTable. /// /// This function is unsafe because the caller must guarantee that the /// complete physical memory is mapped to virtual memory at the passed /// `physical_memory_offset`. Also, this function must be only called once /// to avoid aliasing `&mut` references (which is undefined behavior). pub unsafe fn init(physical_memory_offset: VirtAddr) -> OffsetPageTable<'static> { let level_4_table = active_level_4_table(physical_memory_offset); OffsetPageTable::new(level_4_table, physical_memory_offset) } /// Returns a mutable reference to the active level 4 table. /// /// This function is unsafe because the caller must guarantee that the /// complete physical memory is mapped to virtual memory at the passed /// `physical_memory_offset`. Also, this function must be only called once /// to avoid aliasing `&mut` references (which is undefined behavior). unsafe fn active_level_4_table(physical_memory_offset: VirtAddr) -> &'static mut PageTable { use x86_64::registers::control::Cr3; let (level_4_table_frame, _) = Cr3::read(); let phys = level_4_table_frame.start_address(); let virt = physical_memory_offset + phys.as_u64(); let page_table_ptr: *mut PageTable = virt.as_mut_ptr(); &mut *page_table_ptr // unsafe } /// Creates an example mapping for the given page to frame `0xb8000`. pub fn create_example_mapping( page: Page, mapper: &mut OffsetPageTable, frame_allocator: &mut impl FrameAllocator, ) { use x86_64::structures::paging::PageTableFlags as Flags; let frame = PhysFrame::containing_address(PhysAddr::new(0xb8000)); let not_really_unused_frame = unsafe { UnusedPhysFrame::new(frame) }; let flags = Flags::PRESENT | Flags::WRITABLE; let map_to_result = unsafe { mapper.map_to(page, not_really_unused_frame, flags, frame_allocator) }; map_to_result.expect("map_to failed").flush(); } /// A FrameAllocator that returns usable frames from the bootloader's memory map. pub struct BootInfoFrameAllocator { memory_map: &'static MemoryMap, next: usize, } impl BootInfoFrameAllocator { /// Create a FrameAllocator from the passed memory map. /// /// This function is unsafe because the caller must guarantee that the passed /// memory map is valid. The main requirement is that all frames that are marked /// as `USABLE` in it are really unused. pub unsafe fn init(memory_map: &'static MemoryMap) -> Self { BootInfoFrameAllocator { memory_map, next: 0, } } fn usable_frames(&self) -> impl Iterator { // get usable regions from memory map let regions = self.memory_map.iter(); let usable_regions = regions.filter(|r| r.region_type == MemoryRegionType::Usable); // map each region to its address range let addr_ranges = usable_regions.map(|r| r.range.start_addr()..r.range.end_addr()); // transform to an iterator of frame start addresses let frame_addresses = addr_ranges.flat_map(|r| r.step_by(4096)); // create `PhysFrame` types from the start addresses let frames = frame_addresses.map(|addr| PhysFrame::containing_address(PhysAddr::new(addr))); frames } } unsafe impl FrameAllocator for BootInfoFrameAllocator { fn allocate_frame(&mut self) -> Option { let frame = self.usable_frames().nth(self.next); self.next += 1; frame.map(|f| unsafe { UnusedPhysFrame::new(f) }) } }