Compare commits

...

2 Commits

2 changed files with 131 additions and 32 deletions

View File

@ -9,8 +9,7 @@ import seaborn as sns
#import tikzplotlib
import wquantiles as wq
import numpy as np
from functools import partial
import argparse
import sys
import os
@ -54,15 +53,39 @@ def convert8(x):
return np.array(int(x, base=16)).astype(np.int64)
# return np.int8(int(x, base=16))
if len(sys.argv) != 2:
print(f"Usage: {sys.argv[0]} <file>")
sys.exit(1)
assert os.path.exists(sys.argv[1] + ".slices.csv")
assert os.path.exists(sys.argv[1] + ".cores.csv")
assert os.path.exists(sys.argv[1] + "-results_lite.csv.bz2")
parser = argparse.ArgumentParser(
prog=sys.argv[0],
)
df = pd.read_csv(sys.argv[1] + "-results_lite.csv.bz2",
parser.add_argument("path", help="Path to the experiment files")
parser.add_argument(
"--no-plot",
dest="no_plot",
action="store_true",
default=False,
help="No visible plot (save figures to files)"
)
parser.add_argument(
"--stats",
dest="stats",
action="store_true",
default=False,
help="Don't compute figures, just create .stats.csv file"
)
args = parser.parse_args()
img_dir = os.path.dirname(args.path)+"/figs/"
os.makedirs(img_dir, exist_ok=True)
assert os.path.exists(args.path + ".slices.csv")
assert os.path.exists(args.path + ".cores.csv")
assert os.path.exists(args.path + "-results_lite.csv.bz2")
df = pd.read_csv(args.path + "-results_lite.csv.bz2",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
@ -107,8 +130,8 @@ sample_flush_columns = [
]
slice_mapping = pd.read_csv(sys.argv[1] + ".slices.csv")
core_mapping = pd.read_csv(sys.argv[1] + ".cores.csv")
slice_mapping = pd.read_csv(args.path + ".slices.csv")
core_mapping = pd.read_csv(args.path + ".cores.csv")
def remap_core(key):
def remap(core):
@ -169,7 +192,11 @@ def show_specific_position(attacker, victim, slice):
custom_hist(df_ax_vx_sx["time"], df_ax_vx_sx["clflush_miss_n"], df_ax_vx_sx["clflush_remote_hit"], title=f"A{attacker} V{victim} S{slice}")
#tikzplotlib.save("fig-hist-good-A{}V{}S{}.tex".format(attacker,victim,slice))#, axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plt.show()
if args.no_plot:
plt.savefig(img_dir+"specific-a{}v{}s{}.png".format(attacker, victim, slice))
plt.close()
else:
plt.show()
def show_grid(df, col, row, shown=["clflush_miss_n", "clflush_remote_hit", "clflush_local_hit_n", "clflush_shared_hit"]):
# Color convention here :
@ -179,8 +206,7 @@ def show_grid(df, col, row, shown=["clflush_miss_n", "clflush_remote_hit", "clfl
# Yellow = Shared Hit
g = sns.FacetGrid(df, col=col, row=row, legend_out=True)
g.map(custom_hist, "time", *shown)
plt.show()
return g
def export_stats_csv():
def stat(x, key):
@ -198,25 +224,43 @@ def export_stats_csv():
stats["clflush_local_hit_n"] = hit_local.values
stats["clflush_shared_hit"] = hit_shared.values
stats.to_csv(sys.argv[1] + ".stats.csv", index=False)
stats.to_csv(args.path + ".stats.csv", index=False)
df.loc[:, ("hash",)] = df["hash"].apply(dict_to_json)
if "NO_PLOT" not in os.environ:
if not args.stats:
custom_hist(df["time"], df["clflush_miss_n"], df["clflush_remote_hit"], title="miss v. hit")
plt.show()
if args.no_plot:
plt.savefig(img_dir+"miss_v_hit.png")
plt.close()
else:
plt.show()
show_specific_position(0, 2, 0)
df_main_core_0 = df[df["main_core"] == 0]
df_main_core_0.loc[:, ("hash",)] = df["hash"].apply(dict_to_json)
show_grid(df_main_core_0, "helper_core", "hash")
show_grid(df, "main_core", "hash")
g = show_grid(df_main_core_0, "helper_core", "hash")
if args.no_plot:
g.savefig(img_dir+"helper_grid.png")
plt.close()
else:
plt.show()
g = show_grid(df, "main_core", "hash")
if args.no_plot:
g.savefig(img_dir+"main_grid.png")
plt.close()
else:
plt.show()
if not os.path.exists(sys.argv[1] + ".stats.csv"):
if not os.path.exists(args.path + ".stats.csv") or args.stats:
export_stats_csv()
else:
print("Skipping .stats.csv export")

View File

@ -9,6 +9,7 @@ import seaborn as sns
from sys import exit
import numpy as np
from scipy import optimize
import argparse
import sys
import os
@ -18,7 +19,7 @@ warnings.filterwarnings('ignore')
print("warnings are filtered, enable them back if you are having some trouble")
# TODO
# sys.argv[1] should be the root
# args.path should be the root
# with root-result_lite.csv.bz2 the result
# and .stats.csv
# root.slices a slice mapping - done
@ -29,11 +30,30 @@ print("warnings are filtered, enable them back if you are having some trouble")
# each row is an origin core
# each column a helper core if applicable
assert os.path.exists(sys.argv[1] + ".stats.csv")
assert os.path.exists(sys.argv[1] + ".slices.csv")
assert os.path.exists(sys.argv[1] + ".cores.csv")
parser = argparse.ArgumentParser(
prog=sys.argv[0],
)
stats = pd.read_csv(sys.argv[1] + ".stats.csv",
parser.add_argument("path", help="Path to the experiment files")
parser.add_argument(
"--no-plot",
dest="no_plot",
action="store_true",
default=False,
help="No visible plot (save figures to files)"
)
args = parser.parse_args()
img_dir = os.path.dirname(args.path)+"/figs/"
os.makedirs(img_dir, exist_ok=True)
assert os.path.exists(args.path + ".stats.csv")
assert os.path.exists(args.path + ".slices.csv")
assert os.path.exists(args.path + ".cores.csv")
stats = pd.read_csv(args.path + ".stats.csv",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
@ -53,8 +73,8 @@ stats = pd.read_csv(sys.argv[1] + ".stats.csv",
}
)
slice_mapping = pd.read_csv(sys.argv[1] + ".slices.csv")
core_mapping = pd.read_csv(sys.argv[1] + ".cores.csv")
slice_mapping = pd.read_csv(args.path + ".slices.csv")
core_mapping = pd.read_csv(args.path + ".cores.csv")
print("core mapping:\n", core_mapping.to_string())
print("slice mapping:\n", slice_mapping.to_string())
@ -72,7 +92,6 @@ def remap_core(key):
return remap
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
@ -92,7 +111,11 @@ print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
g_ = sns.FacetGrid(stats, col="main_core_fixed", row="slice_group")
g_.map(sns.histplot, 'clflush_miss_n', bins=range(graph_lower_miss, graph_upper_miss), color="b", edgecolor="b", alpha=0.2)
plt.show()
if args.no_plot:
g_.savefig(img_dir+"medians0.png")
plt.close()
else:
plt.show()
@ -245,7 +268,11 @@ figure_median_I.tight_layout()
# import tikzplotlib
# tikzplotlib.save("fig-median-I.tex", axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plt.show()
if args.no_plot:
plt.savefig(img_dir+"medians1.png")
plt.close()
else:
plt.show()
#stats["predicted_remote_hit_no_gpu"] = exclusive_hit_topology_nogpu_df(stats, *(res_no_gpu[0]))
stats["predicted_remote_hit_gpu"] = exclusive_hit_topology_gpu_df(stats, *(res_gpu[0]))
@ -259,19 +286,36 @@ figure_median_E_A0.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_
figure_median_E_A0.set_titles(col_template="$S$ = {col_name}")
# tikzplotlib.save("fig-median-E-A0.tex", axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plt.show()
if args.no_plot:
plt.savefig(img_dir+"medians1.png")
plt.close()
else:
plt.show()
g = sns.FacetGrid(stats, row="main_core_fixed")
g.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
if args.no_plot:
g.savefig(img_dir+"medians2.png")
plt.close()
else:
plt.show()
g0 = sns.FacetGrid(stats, row="slice_group")
g0.map(sns.scatterplot, 'main_core_fixed', 'clflush_miss_n', color="b")
g0.map(sns.scatterplot, 'main_core_fixed', 'clflush_local_hit_n', color="g") # this gives away the trick I think !
# possibility of sending a general please discard this everyone around one of the ring + wait for ACK - direction depends on the core.
if args.no_plot:
g0.savefig(img_dir+"medians2.png")
plt.close()
else:
plt.show()
g2 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
@ -281,9 +325,20 @@ g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu', color="r")
#g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_no_gpu', color="g")
#g2.map(plot_func(exclusive_hit_topology_nogpu_df, *(res_no_gpu[0])), 'helper_core_fixed', color="g")
if args.no_plot:
g2.savefig(img_dir+"medians3.png")
plt.close()
else:
plt.show()
g3 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g3.map(sns.scatterplot, 'helper_core_fixed', 'clflush_shared_hit', color="y")
# more ideas needed
if args.no_plot:
g3.savefig(img_dir+"medians4.png")
plt.close()
else:
plt.show()
plt.show()