Compare commits
3 Commits
45e5fa84a5
...
7d2ea63108
Author | SHA1 | Date | |
---|---|---|---|
7d2ea63108 | |||
e610acfc8f | |||
dee9f37a17 |
@ -163,6 +163,7 @@ columns = [
|
|||||||
("helper_core_fixed", "helper_core", "core"),
|
("helper_core_fixed", "helper_core", "core"),
|
||||||
("helper_ht", "helper_core", "hthread"),
|
("helper_ht", "helper_core", "hthread"),
|
||||||
]
|
]
|
||||||
|
if not args.stats:
|
||||||
for (col, icol, key) in columns:
|
for (col, icol, key) in columns:
|
||||||
df[col] = df[icol].apply(remap_core(key))
|
df[col] = df[icol].apply(remap_core(key))
|
||||||
print_timed(f"Column {col} added")
|
print_timed(f"Column {col} added")
|
||||||
@ -244,7 +245,7 @@ def export_stats_csv():
|
|||||||
"""
|
"""
|
||||||
Compute the statistic for 1 helper core/main core/slice/column
|
Compute the statistic for 1 helper core/main core/slice/column
|
||||||
- median : default, not influenced by errors
|
- median : default, not influenced by errors
|
||||||
- average : better accuracy when observing floor steps in the results
|
- average : better precision when observing floor steps in the results
|
||||||
"""
|
"""
|
||||||
# return wq.median(x["time"], x[key])
|
# return wq.median(x["time"], x[key])
|
||||||
return np.average(x[key], weights=x["time"])
|
return np.average(x[key], weights=x["time"])
|
||||||
|
@ -177,44 +177,76 @@ num_core = len(stats["main_core_fixed"].unique())/2
|
|||||||
def ring_distance(x0, x1):
|
def ring_distance(x0, x1):
|
||||||
"""
|
"""
|
||||||
return (a, b) where `a` is the core distance and `b` the larger "ring step"
|
return (a, b) where `a` is the core distance and `b` the larger "ring step"
|
||||||
|
it is possible that going from 0->7 costs one more than 3->4
|
||||||
"""
|
"""
|
||||||
dist = abs(x0-x1)
|
dist = abs(x0-x1)
|
||||||
if x0 // (num_core/2) != x1 // (num_core/2):
|
if x0 // (num_core/2) != x1 // (num_core/2):
|
||||||
return min(num_core-1-dist, dist-1), 1
|
# côté du coeur différent
|
||||||
|
return min((num_core-1-dist, 2), (dist-1, 1))
|
||||||
else:
|
else:
|
||||||
return dist, 0
|
return dist, 0
|
||||||
|
|
||||||
def slice_msg_distance(x1, x0):
|
def slice_msg_distance(source, dest):
|
||||||
"""
|
"""
|
||||||
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
|
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
|
||||||
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
|
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
|
||||||
|
le bonus correspond au fait que 0->7 puisse coûter 1 de plus que 3->4
|
||||||
"""
|
"""
|
||||||
dist = abs(x0-x1)
|
dist = abs(source-dest)
|
||||||
if x0 == 3:
|
if source // (num_core/2) == dest // (num_core/2):
|
||||||
dist = (x0-x1+8)%8
|
return (dist, 0)
|
||||||
elif x0 == 4:
|
|
||||||
dist = (x1-x0+8)%8
|
|
||||||
|
|
||||||
if x0 in [0, 3, 4, 7]:
|
# Pour aller de l'autre côté
|
||||||
if dist > 3:
|
up, down = (num_core-1-dist, 2), (dist-1, 1)
|
||||||
return dist, 1
|
if source in [0, 7]:
|
||||||
return dist, 0
|
return down
|
||||||
|
if source in [3, 4] or source in [2, 5]:
|
||||||
|
return up
|
||||||
|
if source in [1, 6]:
|
||||||
|
return min(up, down)
|
||||||
|
|
||||||
return ring_distance(x0, x1)
|
raise IndexError
|
||||||
|
|
||||||
|
def ha_dist(core, is_QPI):
|
||||||
|
"""
|
||||||
|
distance to Home Agent
|
||||||
|
"""
|
||||||
|
if is_QPI:
|
||||||
|
if core < 4:
|
||||||
|
return core
|
||||||
|
return 7-core
|
||||||
|
|
||||||
def miss_topology(main_core, slice_group, C, h, H):
|
if core < 4:
|
||||||
core, ring = slice_msg_distance(main_core, slice_group)
|
return 3-core
|
||||||
return C + h * core + H*ring
|
return core-4
|
||||||
|
|
||||||
def miss_topology_df(x, C, h, H):
|
def cclockwise_ha_dist(core, is_QPI):
|
||||||
func = lambda x, C, h, H: miss_topology(x["main_core_fixed"], x["slice_group"], C, h, H)
|
"""
|
||||||
return x.apply(func, args=(C, h, H), axis=1)
|
counter-clockwise distance to Home Agent
|
||||||
|
"""
|
||||||
|
if is_QPI:
|
||||||
|
return 7-core
|
||||||
|
|
||||||
|
if core < 4:
|
||||||
|
return 3-core
|
||||||
|
return 11-core
|
||||||
|
|
||||||
|
def miss_topology(main_core, slice_group, h, down_jump, top_jump, ini, ha_h):
|
||||||
|
core, ring = slice_msg_distance(slice_group, main_core%8)
|
||||||
|
|
||||||
|
side_jump = 0
|
||||||
|
side_jump += top_jump if ring == 2 else 0
|
||||||
|
side_jump += down_jump if ring == 1 else 0
|
||||||
|
return (cclockwise_ha_dist(slice_group, False)//2)*ha_h+h*core + side_jump + ini
|
||||||
|
|
||||||
|
def miss_topology_df(x, h, down_jump, top_jump, ini, ha_h):
|
||||||
|
func = lambda x, h, down_jump, top_jump, ini, ha_h: miss_topology(x["main_core_fixed"], x["slice_group"], h, down_jump, top_jump, ini, ha_h)
|
||||||
|
return x.apply(func, args=(h, down_jump, top_jump, ini, ha_h), axis=1)
|
||||||
|
|
||||||
|
|
||||||
def remote_hit_topology(main_core, helper_core, slice_group, C, h, H):
|
def remote_hit_topology(main_core, helper_core, slice_group, C, h, H):
|
||||||
core0, ring0 = slice_msg_distance(main_core, slice_group)
|
core0, ring0, _ = slice_msg_distance(main_core, slice_group)
|
||||||
core1, ring1 = slice_msg_distance(helper_core, slice_group)
|
core1, ring1, _ = slice_msg_distance(helper_core, slice_group)
|
||||||
return C + h*(core0+core1) + H*(ring0+ring1)
|
return C + h*(core0+core1) + H*(ring0+ring1)
|
||||||
|
|
||||||
def remote_hit_topology_df(x, C, h, H):
|
def remote_hit_topology_df(x, C, h, H):
|
||||||
@ -223,7 +255,7 @@ def remote_hit_topology_df(x, C, h, H):
|
|||||||
|
|
||||||
|
|
||||||
def do_predictions(df):
|
def do_predictions(df):
|
||||||
def plot_predicted_topo(col, row, x_ax, target, pred):
|
def plot_predicted_topo(col, row, x_ax, target, pred, df=df):
|
||||||
title_letter = {
|
title_letter = {
|
||||||
"main_core_fixed": "A",
|
"main_core_fixed": "A",
|
||||||
"helper_core_fixed": "V",
|
"helper_core_fixed": "V",
|
||||||
@ -238,14 +270,54 @@ def do_predictions(df):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
df = df[(df["main_socket"] == 0) & (df["helper_socket"] == 0)]
|
values = []
|
||||||
|
main_socket, helper_socket = 0, 0
|
||||||
|
dfc = df[(df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
|
||||||
|
cores = sorted(list(dfc["main_core_fixed"].unique()))
|
||||||
|
slices = sorted(list(dfc["slice_group"].unique()))
|
||||||
res_miss = optimize.curve_fit(
|
res_miss = optimize.curve_fit(
|
||||||
miss_topology_df, df[["main_core_fixed", "slice_group"]], df["clflush_miss_n"]
|
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
|
||||||
)
|
)
|
||||||
print("Miss topology:")
|
print("Miss topology:")
|
||||||
print(res_miss)
|
print(res_miss)
|
||||||
|
values.append(res_miss[0])
|
||||||
|
|
||||||
|
|
||||||
|
dfc["predicted_miss"] = miss_topology_df(dfc, *(res_miss[0]))
|
||||||
|
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss", df=dfc)
|
||||||
|
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss", df=dfc)
|
||||||
|
|
||||||
|
for slice_ in slices:
|
||||||
|
dfc = df[(df["slice_group"] == slice_) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
|
||||||
|
res_miss = optimize.curve_fit(
|
||||||
|
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
|
||||||
|
)
|
||||||
|
values.append(res_miss[0])
|
||||||
|
|
||||||
|
dfc[f"predicted_miss_{slice_}"] = miss_topology_df(dfc, *(res_miss[0]))
|
||||||
|
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", f"predicted_miss_{slice_}", df=dfc)
|
||||||
|
|
||||||
|
|
||||||
|
print(list(values[0]))
|
||||||
|
print()
|
||||||
|
for i in values[1:]:
|
||||||
|
print(list(i))
|
||||||
|
|
||||||
|
values = []
|
||||||
|
for core in cores:
|
||||||
|
dfc = df[(df["main_core_fixed"] == core) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
|
||||||
|
res_miss = optimize.curve_fit(
|
||||||
|
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
|
||||||
|
)
|
||||||
|
values.append(res_miss[0])
|
||||||
|
|
||||||
|
dfc[f"predicted_miss_core{core}"] = miss_topology_df(dfc, *(res_miss[0]))
|
||||||
|
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", f"predicted_miss_core{core}", df=dfc)
|
||||||
|
|
||||||
|
for i in values:
|
||||||
|
print(list(i))
|
||||||
|
return
|
||||||
|
|
||||||
res_remote_hit = optimize.curve_fit(
|
res_remote_hit = optimize.curve_fit(
|
||||||
remote_hit_topology_df, df[["main_core_fixed", "helper_core_fixed", "slice_group"]], df["clflush_remote_hit"]
|
remote_hit_topology_df, df[["main_core_fixed", "helper_core_fixed", "slice_group"]], df["clflush_remote_hit"]
|
||||||
)
|
)
|
||||||
@ -253,13 +325,24 @@ def do_predictions(df):
|
|||||||
print(res_remote_hit)
|
print(res_remote_hit)
|
||||||
|
|
||||||
|
|
||||||
df["predicted_miss"] = miss_topology_df(df, *(res_miss[0]))
|
|
||||||
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss")
|
|
||||||
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss")
|
|
||||||
|
|
||||||
df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0]))
|
df["diff_miss"] = df["clflush_miss_n"] - df["predicted_miss"]
|
||||||
plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit")
|
facet_grid(
|
||||||
plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit")
|
df, None, "main_core_fixed", "slice_group",
|
||||||
|
title=f"predicted_miss_diff_facet_slice.png",
|
||||||
|
shown=["diff_miss"],
|
||||||
|
separate_hthreads=True
|
||||||
|
)
|
||||||
|
facet_grid(
|
||||||
|
df, None, "slice_group", "main_core_fixed",
|
||||||
|
title=f"predicted_miss_diff_facet_main.png",
|
||||||
|
shown=["diff_miss"],
|
||||||
|
separate_hthreads=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0]))
|
||||||
|
# plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit")
|
||||||
|
# plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -315,30 +398,34 @@ def facet_grid(
|
|||||||
**kwargs
|
**kwargs
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
grid.map(draw_fn, third, el, color=colors[i % len(colors)])
|
grid.map(draw_fn, third, el, color=colors[i % len(colors)], marker='+')
|
||||||
|
|
||||||
if title is not None:
|
if title is not None:
|
||||||
plot(title, g=grid)
|
plot(title, g=grid)
|
||||||
return grid
|
return grid
|
||||||
|
|
||||||
|
|
||||||
def all_facets(df, pre="", post="", *args, **kwargs):
|
def all_facets(df, pre="", post="", no_helper=False, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
df : panda dataframe
|
df : panda dataframe
|
||||||
pre, post: strings to add before and after the filename
|
pre, post: strings to add before and after the filename
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
helper = None if no_helper else "helper_core_fixed"
|
||||||
facet_grid(
|
facet_grid(
|
||||||
df, "helper_core_fixed", "main_core_fixed", "slice_group",
|
df, helper, "main_core_fixed", "slice_group",
|
||||||
title=f"{pre}facet_slice{post}.png", *args, **kwargs
|
title=f"{pre}facet_slice{post}.png", *args, **kwargs,
|
||||||
|
separate_hthreads=False
|
||||||
)
|
)
|
||||||
facet_grid(
|
facet_grid(
|
||||||
df, "helper_core_fixed", "slice_group", "main_core_fixed",
|
df, helper, "slice_group", "main_core_fixed",
|
||||||
title=f"{pre}facet_main{post}.png", *args, **kwargs
|
title=f"{pre}facet_main{post}.png", *args, **kwargs,
|
||||||
|
separate_hthreads=False
|
||||||
)
|
)
|
||||||
facet_grid(
|
facet_grid(
|
||||||
df, "main_core_fixed", "slice_group", "helper_core_fixed",
|
df, "main_core_fixed", "slice_group", "helper_core_fixed",
|
||||||
title=f"{pre}facet_helper{post}.png", *args, **kwargs
|
title=f"{pre}facet_helper{post}.png", *args, **kwargs,
|
||||||
|
separate_hthreads=False
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@ -369,6 +456,7 @@ def do_facet(main: int, helper: int, line: bool, metrics: str):
|
|||||||
post=f"_m{main}h{helper}",
|
post=f"_m{main}h{helper}",
|
||||||
shown=shown,
|
shown=shown,
|
||||||
colors=colors,
|
colors=colors,
|
||||||
|
no_helper=True,
|
||||||
draw_fn=sns.lineplot if line else sns.scatterplot
|
draw_fn=sns.lineplot if line else sns.scatterplot
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -376,19 +464,28 @@ def do_facet(main: int, helper: int, line: bool, metrics: str):
|
|||||||
if args.rslice:
|
if args.rslice:
|
||||||
rslice()
|
rslice()
|
||||||
|
|
||||||
# do_predictions(stats)
|
do_predictions(stats)
|
||||||
# all_facets(stats, shown=["clflush_remote_hit"], colors=["r"])
|
#all_facets(stats, shown=["clflush_remote_hit"], colors=["r"], pre="hit")
|
||||||
|
#all_facets(stats, shown=["clflush_miss_n"], colors=["b"], pre="miss")
|
||||||
|
|
||||||
|
#df=stats
|
||||||
|
#for m, h, s in itertools.product((0, 1), (0, 1), df["slice_group"].unique()):
|
||||||
|
# dfc = df[(df["main_socket"] == m) & (df["main_core_fixed"]%8é == s) & (df["helper_socket"] == h)]
|
||||||
|
#
|
||||||
|
# grid = sns.FacetGrid(dfc, row=None, col=None)
|
||||||
|
# grid.map(sns.scatterplot, "slice_group", "clflush_miss_n", marker="+")
|
||||||
|
#
|
||||||
|
# plot(f"miss_m{m}h{h}m{s}", g=grid)
|
||||||
|
|
||||||
|
|
||||||
|
#with Pool(8) as pool:
|
||||||
with Pool(8) as pool:
|
# pool.starmap(
|
||||||
pool.starmap(
|
# do_facet,
|
||||||
do_facet,
|
# itertools.product(
|
||||||
itertools.product(
|
# stats["main_socket"].unique(),
|
||||||
stats["main_socket"].unique(),
|
# stats["helper_socket"].unique(),
|
||||||
stats["helper_socket"].unique(),
|
# (False, ),
|
||||||
(True, False),
|
# ("hit", "miss")
|
||||||
("hit", "miss")
|
# )
|
||||||
)
|
# )
|
||||||
)
|
|
||||||
|
|
||||||
|
25
cache_utils/remap_cores.py
Normal file
25
cache_utils/remap_cores.py
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
import sys
|
||||||
|
|
||||||
|
if len(sys.argv) != 3:
|
||||||
|
print(f"Usage: {sys.argv[0]} <input.csv> <mapping>")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
input_file = sys.argv[1]
|
||||||
|
mapping_file = sys.argv[2]
|
||||||
|
|
||||||
|
mapping = []
|
||||||
|
with open(mapping_file, "r") as f:
|
||||||
|
for i in f.read().split("\n"):
|
||||||
|
if i != "":
|
||||||
|
mapping.append(int(i))
|
||||||
|
|
||||||
|
|
||||||
|
with open(input_file, "r") as f:
|
||||||
|
for line in f.read().split("\n"):
|
||||||
|
if line == "" or "core" in line:
|
||||||
|
print(line)
|
||||||
|
continue
|
||||||
|
|
||||||
|
sock, core, ht = map(int, line.split(","))
|
||||||
|
core = mapping[core]
|
||||||
|
print(f"{sock},{core},{ht}")
|
Loading…
Reference in New Issue
Block a user