diff --git a/cache_utils/analyse_csv.py b/cache_utils/analyse_csv.py index b9dbd9a..8b16ae4 100644 --- a/cache_utils/analyse_csv.py +++ b/cache_utils/analyse_csv.py @@ -163,9 +163,10 @@ columns = [ ("helper_core_fixed", "helper_core", "core"), ("helper_ht", "helper_core", "hthread"), ] -for (col, icol, key) in columns: - df[col] = df[icol].apply(remap_core(key)) - print_timed(f"Column {col} added") +if not args.stats: + for (col, icol, key) in columns: + df[col] = df[icol].apply(remap_core(key)) + print_timed(f"Column {col} added") if args.slice_remap: @@ -244,13 +245,13 @@ def export_stats_csv(): """ Compute the statistic for 1 helper core/main core/slice/column - median : default, not influenced by errors - - average : better accuracy when observing floor steps in the results + - average : better precision when observing floor steps in the results """ # return wq.median(x["time"], x[key]) return np.average(x[key], weights=x["time"]) - + df_grouped = df.groupby(["main_core", "helper_core", "hash"]) - + miss = df_grouped.apply(lambda x: compute_stat(x, "clflush_miss_n")) hit_remote = df_grouped.apply(lambda x: compute_stat(x, "clflush_remote_hit")) hit_local = df_grouped.apply(lambda x: compute_stat(x, "clflush_local_hit_n"))