Update miss_topology
This commit is contained in:
parent
45e5fa84a5
commit
dee9f37a17
@ -177,44 +177,76 @@ num_core = len(stats["main_core_fixed"].unique())/2
|
||||
def ring_distance(x0, x1):
|
||||
"""
|
||||
return (a, b) where `a` is the core distance and `b` the larger "ring step"
|
||||
it is possible that going from 0->7 costs one more than 3->4
|
||||
"""
|
||||
dist = abs(x0-x1)
|
||||
if x0 // (num_core/2) != x1 // (num_core/2):
|
||||
return min(num_core-1-dist, dist-1), 1
|
||||
# côté du coeur différent
|
||||
return min((num_core-1-dist, 2), (dist-1, 1))
|
||||
else:
|
||||
return dist, 0
|
||||
|
||||
def slice_msg_distance(x1, x0):
|
||||
def slice_msg_distance(source, dest):
|
||||
"""
|
||||
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
|
||||
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
|
||||
le bonus correspond au fait que 0->7 puisse coûter 1 de plus que 3->4
|
||||
"""
|
||||
dist = abs(x0-x1)
|
||||
if x0 == 3:
|
||||
dist = (x0-x1+8)%8
|
||||
elif x0 == 4:
|
||||
dist = (x1-x0+8)%8
|
||||
dist = abs(source-dest)
|
||||
if source // (num_core/2) == dest // (num_core/2):
|
||||
return (dist, 0)
|
||||
|
||||
if x0 in [0, 3, 4, 7]:
|
||||
if dist > 3:
|
||||
return dist, 1
|
||||
return dist, 0
|
||||
# Pour aller de l'autre côté
|
||||
up, down = (num_core-1-dist, 2), (dist-1, 1)
|
||||
if source in [0, 7]:
|
||||
return down
|
||||
if source in [3, 4] or source in [2, 5]:
|
||||
return up
|
||||
if source in [1, 6]:
|
||||
return min(up, down)
|
||||
|
||||
return ring_distance(x0, x1)
|
||||
raise IndexError
|
||||
|
||||
def ha_dist(core, is_QPI):
|
||||
"""
|
||||
distance to Home Agent
|
||||
"""
|
||||
if is_QPI:
|
||||
if core < 4:
|
||||
return core
|
||||
return 7-core
|
||||
|
||||
def miss_topology(main_core, slice_group, C, h, H):
|
||||
core, ring = slice_msg_distance(main_core, slice_group)
|
||||
return C + h * core + H*ring
|
||||
if core < 4:
|
||||
return 3-core
|
||||
return core-4
|
||||
|
||||
def miss_topology_df(x, C, h, H):
|
||||
func = lambda x, C, h, H: miss_topology(x["main_core_fixed"], x["slice_group"], C, h, H)
|
||||
return x.apply(func, args=(C, h, H), axis=1)
|
||||
def cclockwise_ha_dist(core, is_QPI):
|
||||
"""
|
||||
counter-clockwise distance to Home Agent
|
||||
"""
|
||||
if is_QPI:
|
||||
return 7-core
|
||||
|
||||
if core < 4:
|
||||
return 3-core
|
||||
return 11-core
|
||||
|
||||
def miss_topology(main_core, slice_group, h, down_jump, top_jump, ini, ha_h):
|
||||
core, ring = slice_msg_distance(slice_group, main_core%8)
|
||||
|
||||
side_jump = 0
|
||||
side_jump += top_jump if ring == 2 else 0
|
||||
side_jump += down_jump if ring == 1 else 0
|
||||
return (cclockwise_ha_dist(slice_group, False)//2)*ha_h+h*core + side_jump + ini
|
||||
|
||||
def miss_topology_df(x, h, down_jump, top_jump, ini, ha_h):
|
||||
func = lambda x, h, down_jump, top_jump, ini, ha_h: miss_topology(x["main_core_fixed"], x["slice_group"], h, down_jump, top_jump, ini, ha_h)
|
||||
return x.apply(func, args=(h, down_jump, top_jump, ini, ha_h), axis=1)
|
||||
|
||||
|
||||
def remote_hit_topology(main_core, helper_core, slice_group, C, h, H):
|
||||
core0, ring0 = slice_msg_distance(main_core, slice_group)
|
||||
core1, ring1 = slice_msg_distance(helper_core, slice_group)
|
||||
core0, ring0, _ = slice_msg_distance(main_core, slice_group)
|
||||
core1, ring1, _ = slice_msg_distance(helper_core, slice_group)
|
||||
return C + h*(core0+core1) + H*(ring0+ring1)
|
||||
|
||||
def remote_hit_topology_df(x, C, h, H):
|
||||
@ -223,7 +255,7 @@ def remote_hit_topology_df(x, C, h, H):
|
||||
|
||||
|
||||
def do_predictions(df):
|
||||
def plot_predicted_topo(col, row, x_ax, target, pred):
|
||||
def plot_predicted_topo(col, row, x_ax, target, pred, df=df):
|
||||
title_letter = {
|
||||
"main_core_fixed": "A",
|
||||
"helper_core_fixed": "V",
|
||||
@ -237,15 +269,55 @@ def do_predictions(df):
|
||||
plot(f"medians_{pred}_{col}.png")
|
||||
|
||||
|
||||
|
||||
df = df[(df["main_socket"] == 0) & (df["helper_socket"] == 0)]
|
||||
|
||||
values = []
|
||||
main_socket, helper_socket = 0, 0
|
||||
dfc = df[(df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
|
||||
cores = sorted(list(dfc["main_core_fixed"].unique()))
|
||||
slices = sorted(list(dfc["slice_group"].unique()))
|
||||
res_miss = optimize.curve_fit(
|
||||
miss_topology_df, df[["main_core_fixed", "slice_group"]], df["clflush_miss_n"]
|
||||
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
|
||||
)
|
||||
print("Miss topology:")
|
||||
print(res_miss)
|
||||
values.append(res_miss[0])
|
||||
|
||||
|
||||
dfc["predicted_miss"] = miss_topology_df(dfc, *(res_miss[0]))
|
||||
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss", df=dfc)
|
||||
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss", df=dfc)
|
||||
|
||||
for slice_ in slices:
|
||||
dfc = df[(df["slice_group"] == slice_) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
|
||||
res_miss = optimize.curve_fit(
|
||||
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
|
||||
)
|
||||
values.append(res_miss[0])
|
||||
|
||||
dfc[f"predicted_miss_{slice_}"] = miss_topology_df(dfc, *(res_miss[0]))
|
||||
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", f"predicted_miss_{slice_}", df=dfc)
|
||||
|
||||
|
||||
print(list(values[0]))
|
||||
print()
|
||||
for i in values[1:]:
|
||||
print(list(i))
|
||||
|
||||
values = []
|
||||
for core in cores:
|
||||
dfc = df[(df["main_core_fixed"] == core) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)]
|
||||
res_miss = optimize.curve_fit(
|
||||
miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"]
|
||||
)
|
||||
values.append(res_miss[0])
|
||||
|
||||
dfc[f"predicted_miss_core{core}"] = miss_topology_df(dfc, *(res_miss[0]))
|
||||
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", f"predicted_miss_core{core}", df=dfc)
|
||||
|
||||
for i in values:
|
||||
print(list(i))
|
||||
return
|
||||
|
||||
res_remote_hit = optimize.curve_fit(
|
||||
remote_hit_topology_df, df[["main_core_fixed", "helper_core_fixed", "slice_group"]], df["clflush_remote_hit"]
|
||||
)
|
||||
@ -253,15 +325,26 @@ def do_predictions(df):
|
||||
print(res_remote_hit)
|
||||
|
||||
|
||||
df["predicted_miss"] = miss_topology_df(df, *(res_miss[0]))
|
||||
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss")
|
||||
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss")
|
||||
|
||||
df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0]))
|
||||
plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit")
|
||||
plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit")
|
||||
|
||||
|
||||
df["diff_miss"] = df["clflush_miss_n"] - df["predicted_miss"]
|
||||
facet_grid(
|
||||
df, None, "main_core_fixed", "slice_group",
|
||||
title=f"predicted_miss_diff_facet_slice.png",
|
||||
shown=["diff_miss"],
|
||||
separate_hthreads=True
|
||||
)
|
||||
facet_grid(
|
||||
df, None, "slice_group", "main_core_fixed",
|
||||
title=f"predicted_miss_diff_facet_main.png",
|
||||
shown=["diff_miss"],
|
||||
separate_hthreads=True
|
||||
)
|
||||
|
||||
# df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0]))
|
||||
# plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit")
|
||||
# plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit")
|
||||
|
||||
|
||||
|
||||
|
||||
def rslice():
|
||||
@ -315,30 +398,34 @@ def facet_grid(
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
grid.map(draw_fn, third, el, color=colors[i % len(colors)])
|
||||
grid.map(draw_fn, third, el, color=colors[i % len(colors)], marker='+')
|
||||
|
||||
if title is not None:
|
||||
plot(title, g=grid)
|
||||
return grid
|
||||
|
||||
|
||||
def all_facets(df, pre="", post="", *args, **kwargs):
|
||||
def all_facets(df, pre="", post="", no_helper=False, *args, **kwargs):
|
||||
"""
|
||||
df : panda dataframe
|
||||
pre, post: strings to add before and after the filename
|
||||
"""
|
||||
|
||||
helper = None if no_helper else "helper_core_fixed"
|
||||
facet_grid(
|
||||
df, "helper_core_fixed", "main_core_fixed", "slice_group",
|
||||
title=f"{pre}facet_slice{post}.png", *args, **kwargs
|
||||
df, helper, "main_core_fixed", "slice_group",
|
||||
title=f"{pre}facet_slice{post}.png", *args, **kwargs,
|
||||
separate_hthreads=False
|
||||
)
|
||||
facet_grid(
|
||||
df, "helper_core_fixed", "slice_group", "main_core_fixed",
|
||||
title=f"{pre}facet_main{post}.png", *args, **kwargs
|
||||
df, helper, "slice_group", "main_core_fixed",
|
||||
title=f"{pre}facet_main{post}.png", *args, **kwargs,
|
||||
separate_hthreads=False
|
||||
)
|
||||
facet_grid(
|
||||
df, "main_core_fixed", "slice_group", "helper_core_fixed",
|
||||
title=f"{pre}facet_helper{post}.png", *args, **kwargs
|
||||
title=f"{pre}facet_helper{post}.png", *args, **kwargs,
|
||||
separate_hthreads=False
|
||||
)
|
||||
|
||||
|
||||
@ -369,6 +456,7 @@ def do_facet(main: int, helper: int, line: bool, metrics: str):
|
||||
post=f"_m{main}h{helper}",
|
||||
shown=shown,
|
||||
colors=colors,
|
||||
no_helper=True,
|
||||
draw_fn=sns.lineplot if line else sns.scatterplot
|
||||
)
|
||||
|
||||
@ -376,19 +464,28 @@ def do_facet(main: int, helper: int, line: bool, metrics: str):
|
||||
if args.rslice:
|
||||
rslice()
|
||||
|
||||
# do_predictions(stats)
|
||||
# all_facets(stats, shown=["clflush_remote_hit"], colors=["r"])
|
||||
do_predictions(stats)
|
||||
#all_facets(stats, shown=["clflush_remote_hit"], colors=["r"], pre="hit")
|
||||
#all_facets(stats, shown=["clflush_miss_n"], colors=["b"], pre="miss")
|
||||
|
||||
#df=stats
|
||||
#for m, h, s in itertools.product((0, 1), (0, 1), df["slice_group"].unique()):
|
||||
# dfc = df[(df["main_socket"] == m) & (df["main_core_fixed"]%8é == s) & (df["helper_socket"] == h)]
|
||||
#
|
||||
# grid = sns.FacetGrid(dfc, row=None, col=None)
|
||||
# grid.map(sns.scatterplot, "slice_group", "clflush_miss_n", marker="+")
|
||||
#
|
||||
# plot(f"miss_m{m}h{h}m{s}", g=grid)
|
||||
|
||||
|
||||
|
||||
with Pool(8) as pool:
|
||||
pool.starmap(
|
||||
do_facet,
|
||||
itertools.product(
|
||||
stats["main_socket"].unique(),
|
||||
stats["helper_socket"].unique(),
|
||||
(True, False),
|
||||
("hit", "miss")
|
||||
)
|
||||
)
|
||||
#with Pool(8) as pool:
|
||||
# pool.starmap(
|
||||
# do_facet,
|
||||
# itertools.product(
|
||||
# stats["main_socket"].unique(),
|
||||
# stats["helper_socket"].unique(),
|
||||
# (False, ),
|
||||
# ("hit", "miss")
|
||||
# )
|
||||
# )
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user