Better Cflush calibration - only miss per cache line threshold determination

This commit is contained in:
guillaume didier 2020-03-12 14:20:06 +01:00
parent b32ec3a68b
commit cb9f598a17
4 changed files with 179 additions and 33 deletions

View File

@ -3,7 +3,16 @@ use crate::{flush, maccess, rdtsc_fence};
#[cfg(feature = "no_std")]
use polling_serial::serial_println as println;
#[derive(Ord, PartialOrd, Eq, PartialEq)]
pub enum Verbosity {
NoOutput,
Thresholds,
RawResult,
Debug,
}
extern crate alloc;
use crate::calibration::Verbosity::{Debug, RawResult, Thresholds};
use alloc::vec;
use alloc::vec::Vec;
use core::cmp::min;
@ -132,6 +141,9 @@ pub fn calibrate_access(array: &[u8; 4096]) -> u64 {
const CFLUSH_BUCKET_SIZE: usize = 1;
const CFLUSH_BUCKET_NUMBER: usize = 250;
const CFLUSH_NUM_ITER: usize = 1 << 11;
const CFLUSH_SPURIOUS_THRESHOLD: usize = 1;
/* TODO Code cleanup :
- change type back to a slice OK
- change return type to return thresholds per cache line ?
@ -140,9 +152,14 @@ const CFLUSH_BUCKET_NUMBER: usize = 250;
- parametrize 4k vs 2M ? Or just use the slice length ? OK
*/
pub fn calibrate_flush(array: &[u8], cache_line_size: usize) -> u64 {
pub fn calibrate_flush(
array: &[u8],
cache_line_size: usize,
verbose_level: Verbosity,
) -> Vec<(usize, Vec<(usize, usize)>, usize)> {
println!("Calibrating cflush...");
let mut ret = Vec::new();
// Allocate a target array
// TBD why size, why the position in the array, why the type (usize)
//let mut array = Vec::<usize>::with_capacity(5 << 10);
@ -157,7 +174,7 @@ pub fn calibrate_flush(array: &[u8], cache_line_size: usize) -> u64 {
// the address in memory we are going to target
let pointer = (&array[0]) as *const u8;
if pointer as usize & 0x3f != 0 {
if pointer as usize & (cache_line_size - 1) != 0 {
panic!("not aligned nicely");
}
// do a large sample of accesses to a cached line
@ -165,9 +182,11 @@ pub fn calibrate_flush(array: &[u8], cache_line_size: usize) -> u64 {
let mut hit_histogram = vec![0; CFLUSH_BUCKET_NUMBER];
let mut miss_histogram = hit_histogram.clone();
println!("Calibration for {:p}", unsafe { pointer.offset(i) });
if verbose_level >= Thresholds {
println!("Calibration for {:p}", unsafe { pointer.offset(i) });
}
unsafe { load_and_flush(pointer.offset(i)) }; // align down on 64 bytes
for _ in 1..(1 << 11) {
for _ in 1..CFLUSH_NUM_ITER {
let d = unsafe { load_and_flush(pointer.offset(i)) } as usize;
hit_histogram[min(CFLUSH_BUCKET_NUMBER - 1, d / CFLUSH_BUCKET_SIZE) as usize] += 1;
}
@ -176,7 +195,7 @@ pub fn calibrate_flush(array: &[u8], cache_line_size: usize) -> u64 {
unsafe { flush(pointer.offset(i)) };
unsafe { load_and_flush(pointer.offset(i)) };
for _ in 0..(1 << 10) {
for _ in 0..CFLUSH_NUM_ITER {
let d = unsafe { flush_and_flush(pointer.offset(i)) } as usize;
miss_histogram[min(CFLUSH_BUCKET_NUMBER - 1, d / CFLUSH_BUCKET_SIZE) as usize] += 1;
}
@ -184,35 +203,103 @@ pub fn calibrate_flush(array: &[u8], cache_line_size: usize) -> u64 {
// extract min, max, & median of the distribution.
// set the threshold to mid point between miss max & hit min.
let mut hit_max: (usize, u32) = (0, 0);
let mut miss_max: (usize, u32) = (0, 0);
// determine :
// Hit min, max, median
// Miss min, miss max, median
// If there is no overlap the threshold is trivial
// If there is Grab the point where the ratio is balanced
for i in 0..hit_histogram.len() {
println!(
"{:3}: {:10} {:10}",
i * CFLUSH_BUCKET_SIZE,
hit_histogram[i],
miss_histogram[i]
);
if hit_max.1 < hit_histogram[i] {
hit_max = (i, hit_histogram[i]);
let mut hit_min = 0;
let mut hit_max = 0;
let mut miss_min = 0;
let mut miss_max = 0;
let mut miss_med = 0;
let mut hit_med = 0;
let mut hit_sum = 0;
let mut miss_sum = 0;
//let mut hit_max: (usize, u32) = (0, 0);
//let mut miss_max: (usize, u32) = (0, 0);
for i in 0..(hit_histogram.len() - 1) {
// ignore the last bucket, spurious context switches
if verbose_level >= RawResult {
println!(
"{:3}: {:10} {:10}",
i * CFLUSH_BUCKET_SIZE,
hit_histogram[i],
miss_histogram[i]
);
}
if miss_max.1 < miss_histogram[i] {
miss_max = (i, miss_histogram[i]);
// FIXME
// Code duplication for histogram analysis is meh.
// Is there a better way ?
for (min, max, med, sum, hist) in &mut [
(
&mut hit_min,
&mut hit_max,
&mut hit_med,
&mut hit_sum,
&hit_histogram,
),
(
&mut miss_min,
&mut miss_max,
&mut miss_med,
&mut miss_sum,
&miss_histogram,
),
] {
if **min == 0 {
// looking for min
if hist[i] > CFLUSH_SPURIOUS_THRESHOLD {
**min = i;
}
} else {
// min found, looking for max
if hist[i] > CFLUSH_SPURIOUS_THRESHOLD {
**max = i;
}
}
if **med == 0 {
**sum += hist[i];
if **sum >= CFLUSH_NUM_ITER / 2 {
**med = i;
}
}
}
if verbose_level >= Debug {
println!("sum hit {} miss {}", hit_sum, miss_sum);
}
}
println!("Miss max {}", miss_max.0 * CFLUSH_BUCKET_SIZE);
println!("Max hit {}", hit_max.0 * CFLUSH_BUCKET_SIZE);
if verbose_level >= Thresholds {
println!("Hits: min {} max {} med {}", hit_min, hit_max, hit_med);
println!("Miss: min {} max {} med {}", miss_min, miss_max, miss_med);
}
//println!("Miss max {}", miss_max.0 * CFLUSH_BUCKET_SIZE);
//println!("Max hit {}", hit_max.0 * CFLUSH_BUCKET_SIZE);
let mut threshold: (usize, u32) = (0, u32::max_value());
for i in miss_max.0..hit_max.0 {
/*for i in miss_max.0..hit_max.0 {
if hit_histogram[i] + miss_histogram[i] < threshold.1 {
threshold = (i, hit_histogram[i] + miss_histogram[i]);
}
}
}*/
println!("Threshold {}", threshold.0 * CFLUSH_BUCKET_SIZE);
println!("Calibration done.");
ret.push((
i as usize,
hit_histogram
.iter()
.zip(&miss_histogram)
.map(|(&x, &y)| (x, y))
.collect(),
threshold.0,
));
}
//(threshold.0 * CFLUSH_BUCKET_SIZE) as u64
0
ret
}

View File

@ -1,6 +1,60 @@
// TODO create a nice program that can run on a system and will do the calibration.
// Make multithreaded, with core pinning or single threaded pinned to cores from the shell ?
// Calibration has to be sequential
// Will pin on each core one after the other
//fn execute_on_core(FnOnce)
#![feature(vec_resize_default)]
use cache_utils::calibration::calibrate_flush;
use cache_utils::calibration::Verbosity;
use nix::errno::Errno;
use nix::sched::{sched_getaffinity, sched_setaffinity, CpuSet};
use nix::unistd::Pid;
use nix::Error::Sys;
#[repr(align(4096))]
struct Page {
pub mem: [u8; 4096],
}
pub fn main() {
println!("Hello World!");
let p = Box::new(Page { mem: [0; 4096] });
let m: &[u8] = &p.mem;
eprintln!("Count: {}", CpuSet::count());
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
eprintln!("old: {:?}", old);
for i in 0..(CpuSet::count() - 1) {
if old.is_set(i).unwrap() {
println!("Iteration {}...", i);
let mut core = CpuSet::new();
core.set(i).unwrap();
match sched_setaffinity(Pid::from_raw(0), &core) {
Ok(()) => {
calibrate_flush(m, 64, Verbosity::Thresholds);
sched_setaffinity(Pid::from_raw(0), &old).unwrap();
println!("Iteration {}...ok ", i);
}
Err(Sys(Errno::EINVAL)) => {
println!("skipping");
continue;
}
Err(_) => {
panic!("Unexpected error while setting affinity");
}
}
}
}
// Let's grab all the list of CPUS
// Then iterate the calibration on each CPU core.
}

View File

@ -29,8 +29,8 @@ pub fn enable_prefetchers(status: bool) {
}
pub fn prefetcher_fun(
victim4k_addr: *mut u8,
victim2M_addr: *mut u8,
victim_4k_addr: *mut u8,
victim_2M_addr: *mut u8,
threshold_ff: u64,
) -> Vec<i32> {
let mut results = vec![0; 4096 / 64];
@ -38,7 +38,7 @@ pub fn prefetcher_fun(
for _ in 0..N {
//unsafe { maccess(victim4kaddr) };
for j in (0..4096).step_by(64).rev() {
let t = unsafe { only_flush(victim4k_addr.offset(j)) };
let t = unsafe { only_flush(victim_4k_addr.offset(j)) };
if threshold_ff < t {
// hit
results[(j / 64) as usize] += 1;

View File

@ -35,6 +35,7 @@ use x86_64::PhysAddr;
use x86_64::VirtAddr;
use arrayref;
use cache_utils::calibration::Verbosity;
// Custom panic handler, required for freestanding program
#[cfg(not(test))]
@ -214,6 +215,8 @@ fn kernel_main(boot_info: &'static BootInfo) -> ! {
let cache_line_size = cache_line_size.unwrap_or(64) as usize;
serial_println!("cache line size: {}", cache_line_size);
println!(
"prefetcher status: {}",
cache_utils::prefetcher::prefetcher_status()
@ -226,7 +229,7 @@ fn kernel_main(boot_info: &'static BootInfo) -> ! {
4096
]
});
let threshold_flush_p = cache_utils::calibration::calibrate_flush(
let flush_result_p = cache_utils::calibration::calibrate_flush(
unsafe {
arrayref::array_ref![
core::slice::from_raw_parts(victim4k_start as *mut u8, 4096),
@ -235,6 +238,7 @@ fn kernel_main(boot_info: &'static BootInfo) -> ! {
]
},
cache_line_size,
Verbosity::RawResult,
);
cache_utils::prefetcher::enable_prefetchers(false);
serial_println!("Prefetcher disabled");
@ -245,7 +249,7 @@ fn kernel_main(boot_info: &'static BootInfo) -> ! {
4096
]
});
let threshold_flush = cache_utils::calibration::calibrate_flush(
let flush_resut = cache_utils::calibration::calibrate_flush(
unsafe {
arrayref::array_ref![
core::slice::from_raw_parts(victim4k_start as *mut u8, 4096),
@ -254,15 +258,16 @@ fn kernel_main(boot_info: &'static BootInfo) -> ! {
]
},
cache_line_size,
Verbosity::RawResult,
);
serial_println!("Please compare histograms for sanity");
if distance(threshold_access_p, threshold_access) > 10
|| distance(threshold_flush_p, threshold_flush) > 2
{
if distance(threshold_access_p, threshold_access) > 10 {
panic!("Inconsistent thresholds");
}
let threshold_flush = 0; // FIXME
serial_println!("0");
let r_no_prefetch = prefetcher_fun(
victim4k_start as *mut u8,