diff --git a/cache_utils/show_models.py b/cache_utils/show_models.py deleted file mode 100644 index 7fdf2cd..0000000 --- a/cache_utils/show_models.py +++ /dev/null @@ -1,189 +0,0 @@ -""" -Try some models and see what they look like -Following this die could help https://en.wikichip.org/w/images/4/48/E5_v4_LCC.png -Using the following naming convention: - - ------ - 0 7 - 1 6 - 2 5 - 3 4 - ------ -""" -import matplotlib.pyplot as plt -import seaborn as sns -import pandas as pd -import numpy as np -import itertools -import os - -nb_cores = 8 -nb_slices = 8 -num_core = nb_cores - -cores = list(range(nb_cores)) -slices = list(range(nb_slices)) - -img_dir = os.getenv("PWD")+"/" -def plot(filename, g=None): - if g is not None: - g.savefig(img_dir + filename) - else: - plt.savefig(img_dir + filename) - # tikzplotlib.save( - # img_dir+filename+".tex", - # axis_width=r'0.175\textwidth', - # axis_height=r'0.25\textwidth' - # ) - print(img_dir + filename, "saved") - plt.close() - -def ring_distance(x0, x1): - """ - return (a, b) where `a` is the core distance and `b` the larger "ring step" - it is possible that going from 0->7 costs one more than 3->4 - """ - dist = abs(x0-x1) - if x0 // (num_core/2) != x1 // (num_core/2): - # côté du coeur différent - return min((num_core-1-dist, 2), (dist-1, 1)) - else: - return dist, 0 - -def slice_msg_distance(source, dest): - """ - Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens - (vers toute sa ligne d'abord), sinon, il prend le chemin le plus court - le bonus correspond au fait que 0->7 puisse coûter 1 de plus que 3->4 - """ - dist = abs(source-dest) - if source // (num_core/2) == dest // (num_core/2): - return (dist, 0) - - # Pour aller de l'autre côté - up, down = (num_core-1-dist, 2), (dist-1, 1) - if source in [0, 7]: - return down - if source in [3, 4] or source in [2, 5]: - return up - if source in [1, 6]: - return min(up, down) - - raise IndexError - -def ha_dist(core, is_QPI): - """ - distance to Home Agent - """ - if is_QPI: - if core < 4: - return core, 0 - return 7-core, 1 # +1 for PCI - - if core < 4: - return 3-core, 0 - return core-4, 0 - -def cclockwise_dist(source, dest): - base = (dest+8-source)%8 - side_jump = 0 - if source < 4 and dest >= 4: - side_jump = 1 - elif source >= 4 and dest < 4: - side_jump = 2 - return base, side_jump - -def cclockwise_ha_dist(core, is_QPI): - """ - counter-clockwise distance to Home Agent - """ - if is_QPI: - return cclockwise_dist(core, 7) - return cclockwise_dist(core, 3) - -def no_QPI_dist(source, dest): - """ - Path not using QPI hop - """ - return abs(source-dest), 1 if source // 4 != dest //4 else 0 - - -def miss(): - """ - - ini : initial cost - - core_step : cost to go from one core to the following (eg 0 to 1) - - ring_step : cost to go from one line to the other (eg 0 to 7) - - Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed - """ - def miss_topo(main_core, slice, i, c, l, k): - x, y, z = slice_msg_distance(main_core, slice) - return i+c*x+l*y+k*z - - ini, core_step, ring_step, other_ring_step = 4, 1, 5, 2 - fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5)) - - for i, slice in enumerate(range(8)): - axs[i].plot(cores, [miss_topo(main_core, slice, ini, core_step, ring_step, other_ring_step) for main_core in cores], "ro") - axs[i].set_title(f"slice_group = {slice}") - axs[i].set_ylabel("clflush_miss_n") - axs[i].set_xlabel("main_core_fixed") - axs[i].set_ylim([0, 25]) - - plt.tight_layout() - plt.show() - - -def hit(): - """ - - ini : initial cost - - core_step : cost to go from one core to the following (eg 0 to 1) - - ring_step : cost to go from one line to the other (eg 0 to 7) - - Issue: on a same socket, we observe always the first 4 or last 4 patterns, but not mixed - """ - def hit_topo(main, helper, slice_g, i, c, l): - helper = helper%8 - - main_slice_local = slice_msg_distance(slice_g, main) - slice_QPI = cclockwise_dist(0, slice_g) # clockwise - QPI_slice_r = cclockwise_dist(0, slice_g) - slice_r_helper = slice_msg_distance(slice_g, helper) - - costs = (main_slice_local[0]+slice_QPI[0]+QPI_slice_r[0]+slice_r_helper[0], main_slice_local[1]+slice_QPI[1]+QPI_slice_r[1]+slice_r_helper[1]) - return ini+costs[0]*c+costs[1]*l - - - ini, core_step, ring_step = 12, 1, 1.5 - fig, axs = plt.subplots(nrows=1, ncols=8, figsize=(15, 5)) - - # Define the ranges for x, y, z - main = range(8) - helper = range(8, 16) - slice_g = range(8) - - # Create a DataFrame with all combinations of x, y, and z - data = pd.DataFrame([ - (x, y, z) for z in slice_g - for x, y in itertools.product(main, helper) - ], - columns=['main', 'helper', 'slice_group'] - ) - - # Define the function - def my_function(x): - return hit_topo(x["main"], x["helper"], x["slice_group"], ini, core_step, ring_step) - - # Apply the function to create a new column - data['predicted_hit'] = data.apply(my_function, axis=1) - - fig = sns.FacetGrid(data, col="main", row="helper") - fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="+") - fig.map(sns.scatterplot, "slice_group", "predicted_hit", color="r", marker="x") - fig.set_titles(col_template="$A$ = {col_name}", row_template="$V$ = {row_name}") - - plot("model_hit.png", g=fig) - - - -hit()