Add analysis python script

This script currently just parses the CSV.
Future update should include plotting various metrics.
This commit is contained in:
Guillume DIDIER 2020-04-13 11:16:46 +02:00
parent bc926186b4
commit bb8996efd0
3 changed files with 23 additions and 1 deletions

View File

@ -1,5 +1,10 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<module type="CPP_MODULE" version="4"> <module type="CPP_MODULE" version="4">
<component name="FacetManager">
<facet type="Python" name="Python facet">
<configuration sdkName="Python 3.7" />
</facet>
</component>
<component name="NewModuleRootManager"> <component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$"> <content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/kernel/src" isTestSource="false" /> <sourceFolder url="file://$MODULE_DIR$/kernel/src" isTestSource="false" />
@ -34,5 +39,6 @@
</content> </content>
<orderEntry type="inheritedJdk" /> <orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" /> <orderEntry type="sourceFolder" forTests="false" />
<orderEntry type="library" name="Python 3.7 interpreter library" level="application" />
</component> </component>
</module> </module>

View File

@ -0,0 +1,14 @@
import pandas
columns = ["Addr", "Hash"]
core_number = 8 # FIXME
for i in range(0, core_number):
for stat in ["Min", "Med", "Max"]:
for op in ["Hit", "Miss"]:
columns.append(op + str(i) + stat)
columns.append("Hmm")
df = pandas.read_csv("citron-vert/combined.csv", header=0, names=columns)
selected_columns = columns[:-1]
df = df[selected_columns]
print(df.head())

View File

@ -1,3 +1,5 @@
#![allow(clippy::missing_safety_doc)]
use crate::{flush, maccess, rdtsc_fence}; use crate::{flush, maccess, rdtsc_fence};
use core::arch::x86_64 as arch_x86; use core::arch::x86_64 as arch_x86;
@ -337,7 +339,7 @@ fn calibrate_impl(
); );
} }
println!( println!(
"CSV: {:p}; {:x}, {}, {}, {}", "CSV: {:p}, {:x}, {}, {}, {}",
pointer, pointer,
hash, hash,
calibrate_result.min.iter().format(", "), calibrate_result.min.iter().format(", "),