diff --git a/cache_utils/analyse_medians.py b/cache_utils/analyse_medians.py index b961aa5..ed696ee 100644 --- a/cache_utils/analyse_medians.py +++ b/cache_utils/analyse_medians.py @@ -213,23 +213,29 @@ def ha_dist(core, is_QPI): """ if is_QPI: if core < 4: - return core - return 7-core + return core, 0 + return 7-core, 1 # +1 for PCI if core < 4: - return 3-core - return core-4 + return 3-core, 0 + return core-4, 0 + +def cclockwise_dist(source, dest): + base = (dest+8-source)%8 + side_jump = 0 + if source < 4 and dest >= 4: + side_jump = 1 + elif source >= 4 and dest < 4: + side_jump = 2 + return base, side_jump def cclockwise_ha_dist(core, is_QPI): """ counter-clockwise distance to Home Agent """ if is_QPI: - return 7-core - - if core < 4: - return 3-core - return 11-core + return cclockwise_dist(core, 7) + return cclockwise_dist(core, 3) def miss_topology(main_core, slice_group, h, down_jump, top_jump, ini, ha_h): core, ring = slice_msg_distance(slice_group, main_core%8) @@ -237,95 +243,81 @@ def miss_topology(main_core, slice_group, h, down_jump, top_jump, ini, ha_h): side_jump = 0 side_jump += top_jump if ring == 2 else 0 side_jump += down_jump if ring == 1 else 0 - return (cclockwise_ha_dist(slice_group, False)//2)*ha_h+h*core + side_jump + ini + return (cclockwise_ha_dist(slice_group, False))*ha_h+h*core + side_jump + ini def miss_topology_df(x, h, down_jump, top_jump, ini, ha_h): func = lambda x, h, down_jump, top_jump, ini, ha_h: miss_topology(x["main_core_fixed"], x["slice_group"], h, down_jump, top_jump, ini, ha_h) return x.apply(func, args=(h, down_jump, top_jump, ini, ha_h), axis=1) -def remote_hit_topology(main_core, helper_core, slice_group, C, h, H): - core0, ring0, _ = slice_msg_distance(main_core, slice_group) - core1, ring1, _ = slice_msg_distance(helper_core, slice_group) - return C + h*(core0+core1) + H*(ring0+ring1) +def remote_hit_topology(main_core, helper_core, slice_group, const, core_jump, HA_jump): + """ + main_core + -> local_slice + -> remote_slice + -> helper_core + -> remote_slice + -> local_slice + -> main_core + """ + if main_core // 8 == helper_core // 8: + print("Can only do hit predictions for different socket", file=sys.stderr) + raise NotImplementedError -def remote_hit_topology_df(x, C, h, H): - func = lambda x, C, h, H: remote_hit_topology(x["main_core_fixed"], x["helper_core_fixed"], x["slice_group"], C, h, H) - return x.apply(func, args=(C, h, H), axis=1) + helper, main = helper_core%8, main_core%8 + main_slice_local = slice_msg_distance(slice_group, main) + slice_QPI = cclockwise_dist(0, slice_group) # clockwise + QPI_slice_r = cclockwise_dist(0, slice_group) + slice_r_helper = slice_msg_distance(slice_group, helper) + + costs = (main_slice_local[0]+slice_QPI[0]+QPI_slice_r[0]+slice_r_helper[0], main_slice_local[1]+slice_QPI[1]+QPI_slice_r[1]+slice_r_helper[1]) + return const+costs[0]*core_jump+costs[1]*HA_jump # may need some adjustments + +def remote_hit_topology_df(x, const, core_jump, HA_jump): + func = lambda x, const, core_jump, HA_jump: remote_hit_topology(x["main_core_fixed"], x["helper_core_fixed"], x["slice_group"], const, core_jump, HA_jump) + return x.apply(func, args=(const, core_jump, HA_jump), axis=1) def do_predictions(df): def plot_predicted_topo(col, row, x_ax, target, pred, df=df): - title_letter = { + titles = { "main_core_fixed": "A", "helper_core_fixed": "V", - "slice_group": "S" - }.get(col, col[0]) + "slice_group": "S", + None: "None" + } figure_A0 = sns.FacetGrid(df, col=col, row=row) - figure_A0.map(sns.scatterplot, x_ax, pred, color="r") - figure_A0.map(sns.scatterplot, x_ax, target, color="g", marker="+") - figure_A0.set_titles(col_template="$"+title_letter+"$ = {col_name}") + figure_A0.map(sns.scatterplot, x_ax, target, color="g") + figure_A0.map(sns.scatterplot, x_ax, pred, color="r", marker="+") + figure_A0.set_titles( + col_template="$"+titles.get(col, col[0])+"$ = {col_name}", + row_template="$"+titles.get(row, row[0])+"$ = {row_name}" + ) plot(f"medians_{pred}_{col}.png") - - values = [] main_socket, helper_socket = 0, 0 dfc = df[(df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)] - cores = sorted(list(dfc["main_core_fixed"].unique())) - slices = sorted(list(dfc["slice_group"].unique())) res_miss = optimize.curve_fit( miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"] ) print("Miss topology:") print(res_miss) - values.append(res_miss[0]) - dfc["predicted_miss"] = miss_topology_df(dfc, *(res_miss[0])) plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss", df=dfc) plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss", df=dfc) - for slice_ in slices: - dfc = df[(df["slice_group"] == slice_) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)] - res_miss = optimize.curve_fit( - miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"] - ) - values.append(res_miss[0]) - - dfc[f"predicted_miss_{slice_}"] = miss_topology_df(dfc, *(res_miss[0])) - plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", f"predicted_miss_{slice_}", df=dfc) - - - print(list(values[0])) - print() - for i in values[1:]: - print(list(i)) - - values = [] - for core in cores: - dfc = df[(df["main_core_fixed"] == core) & (df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)] - res_miss = optimize.curve_fit( - miss_topology_df, dfc[["main_core_fixed", "slice_group"]], dfc["clflush_miss_n"] - ) - values.append(res_miss[0]) - - dfc[f"predicted_miss_core{core}"] = miss_topology_df(dfc, *(res_miss[0])) - plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", f"predicted_miss_core{core}", df=dfc) - - for i in values: - print(list(i)) - return - + main_socket, helper_socket = 0, 1 + dfc = df[(df["main_socket"] == main_socket) & (df["helper_socket"] == helper_socket)] res_remote_hit = optimize.curve_fit( - remote_hit_topology_df, df[["main_core_fixed", "helper_core_fixed", "slice_group"]], df["clflush_remote_hit"] + remote_hit_topology_df, dfc[["main_core_fixed", "helper_core_fixed", "slice_group"]], dfc["clflush_remote_hit"] ) print("Remote hit topology:") print(res_remote_hit) - df["diff_miss"] = df["clflush_miss_n"] - df["predicted_miss"] facet_grid( df, None, "main_core_fixed", "slice_group", @@ -339,10 +331,20 @@ def do_predictions(df): shown=["diff_miss"], separate_hthreads=True ) + dfc["predicted_remote_hit"] = remote_hit_topology_df(dfc, *(res_remote_hit[0])) + plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit", df=dfc) + plot_predicted_topo("main_core_fixed", "slice_group", "helper_core_fixed", "clflush_remote_hit", "predicted_remote_hit", df=dfc) + plot_predicted_topo("helper_core_fixed", "main_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit", df=dfc) - # df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0])) - # plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit") - # plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit") + for col in ["slice_group", "helper_core_fixed", "main_core_fixed"]: + for val in sorted(list(dfc[col].unique())): + df_temp = dfc[(dfc[col] == val)] + res_remote_hit = optimize.curve_fit( + remote_hit_topology_df, df_temp[["main_core_fixed", "helper_core_fixed", "slice_group"]], df_temp["clflush_remote_hit"] + ) + df_temp[f"predicted_remote_hit_{col}={val}"] = remote_hit_topology_df(df_temp, *(res_remote_hit[0])) + plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", f"predicted_remote_hit_{col}={val}", df=df_temp) + plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", f"predicted_remote_hit_{col}={val}", df=df_temp) @@ -374,6 +376,7 @@ def facet_grid( colors=["y", "r", "g", "b"], separate_hthreads=False, title=None, + letters=None ): """ Creates a facet grid showing all points @@ -400,6 +403,10 @@ def facet_grid( else: grid.map(draw_fn, third, el, color=colors[i % len(colors)], marker='+') + if letters is not None: + grid.set_titles(col_template="$"+letters[0]+"$ = {row_name}", row_template="$"+letters[1]+"$ = {col_name}") + + if title is not None: plot(title, g=grid) return grid @@ -465,27 +472,66 @@ if args.rslice: rslice() do_predictions(stats) -#all_facets(stats, shown=["clflush_remote_hit"], colors=["r"], pre="hit") -#all_facets(stats, shown=["clflush_miss_n"], colors=["b"], pre="miss") +all_facets(stats, shown=["clflush_remote_hit"], colors=["r"], pre="hit_") +all_facets(stats, shown=["clflush_miss_n"], colors=["b"], pre="miss_") -#df=stats -#for m, h, s in itertools.product((0, 1), (0, 1), df["slice_group"].unique()): -# dfc = df[(df["main_socket"] == m) & (df["main_core_fixed"]%8é == s) & (df["helper_socket"] == h)] -# -# grid = sns.FacetGrid(dfc, row=None, col=None) -# grid.map(sns.scatterplot, "slice_group", "clflush_miss_n", marker="+") -# -# plot(f"miss_m{m}h{h}m{s}", g=grid) +def compare_facing(): + df=stats + for m, h, s in itertools.product((0, 1), (0, 1), df["slice_group"].unique()): + dfc = df[(df["main_socket"] == m) & (df["main_core_fixed"]%8 == s) & (df["helper_socket"] == h)] + + grid = sns.FacetGrid(dfc, row=None, col=None) + grid.map(sns.scatterplot, "slice_group", "clflush_miss_n", marker="+") + + plot(f"miss_m{m}h{h}m{s}", g=grid) -#with Pool(8) as pool: -# pool.starmap( -# do_facet, -# itertools.product( -# stats["main_socket"].unique(), -# stats["helper_socket"].unique(), -# (False, ), -# ("hit", "miss") -# ) -# ) +def isolate_sockets(): + with Pool(8) as pool: + pool.starmap( + do_facet, + itertools.product( + stats["main_socket"].unique(), + stats["helper_socket"].unique(), + (False, ), + ("hit", "miss") + ) + ) +def superpose_sockets(): + for main, same_socket in itertools.product(sorted(stats["main_core_fixed"].unique()), (True, False)): + df = stats[ + (stats["slice_group"] == (main%8)) + & (stats["main_core_fixed"] == main) + & ((stats["main_socket"] == stats["helper_socket"]) == same_socket) + ] + ax = sns.scatterplot(df, x="helper_core_fixed", y="clflush_remote_hit", marker="+", color="r") + ax.set_title(f"$S = {main%8}, V = {main}$") + plot(f"hit_{same_socket}_main{main:02d}.png") + + df = stats[ + (stats["slice_group"] == (stats["main_core_fixed"]%8)) + & ((stats["main_core_fixed"]%8) == (stats["helper_core_fixed"]%8)) + & (stats["main_socket"] != stats["helper_socket"]) + ] + ax = sns.scatterplot(df, x="slice_group", y="clflush_remote_hit", marker="+", color="r") + plot(f"hit_same_slice.png") + + stats["main_core_nosock"] = stats["main_core_fixed"]%8 + stats["helper_core_nosock"] = stats["helper_core_fixed"]%8 + + facet_grid( + stats[(stats["main_socket"] != stats["helper_socket"])], "helper_core_nosock", "main_core_nosock", "slice_group", + title=f"hit_facet_slice_diff_socket.png", + separate_hthreads=True, + shown=["clflush_remote_hit"], + letters="VA" + ) + + facet_grid( + stats[(stats["main_socket"] == stats["helper_socket"])], "helper_core_nosock", "main_core_nosock", "slice_group", + title=f"hit_facet_slice_same_socket.png", + separate_hthreads=True, + letters="VA", + shown=["clflush_remote_hit"] + ) \ No newline at end of file