Add all_facets

Segment code in multiple functions
Reformat with black
This commit is contained in:
augustin64 2024-06-13 11:08:14 +02:00
parent f894161143
commit 31fc0236f8

View File

@ -3,19 +3,19 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-License-Identifier: MIT
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sys import exit
import numpy as np
from scipy import optimize
import argparse
import sys
import os
import sys
import argparse
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import seaborn as sns
from scipy import optimize
import matplotlib.pyplot as plt
warnings.filterwarnings("ignore")
print("warnings are filtered, enable them back if you are having some trouble")
# TODO
@ -41,7 +41,7 @@ parser.add_argument(
dest="no_plot",
action="store_true",
default=False,
help="No visible plot (save figures to files)"
help="No visible plot (save figures to files)",
)
parser.add_argument(
@ -49,45 +49,46 @@ parser.add_argument(
dest="rslice",
action="store_true",
default=False,
help="Create slice{} directories with segmented grid"
help="Create slice{} directories with segmented grid",
)
args = parser.parse_args()
img_dir = os.path.dirname(args.path)+"/figs/"
img_dir = os.path.dirname(args.path) + "/figs/"
os.makedirs(img_dir, exist_ok=True)
assert os.path.exists(args.path + ".stats.csv")
assert os.path.exists(args.path + ".slices.csv")
assert os.path.exists(args.path + ".cores.csv")
stats = pd.read_csv(args.path + ".stats.csv",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
"hash": np.int8,
# "time": np.int16,
"clflush_remote_hit": np.float64,
"clflush_shared_hit": np.float64,
# "clflush_miss_f": np.int32,
# "clflush_local_hit_f": np.int32,
"clflush_miss_n": np.float64,
"clflush_local_hit_n": np.float64,
# "reload_miss": np.int32,
# "reload_remote_hit": np.int32,
# "reload_shared_hit": np.int32,
# "reload_local_hit": np.int32
}
)
stats = pd.read_csv(
args.path + ".stats.csv",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
"hash": np.int8,
# "time": np.int16,
"clflush_remote_hit": np.float64,
"clflush_shared_hit": np.float64,
# "clflush_miss_f": np.int32,
# "clflush_local_hit_f": np.int32,
"clflush_miss_n": np.float64,
"clflush_local_hit_n": np.float64,
# "reload_miss": np.int32,
# "reload_remote_hit": np.int32,
# "reload_shared_hit": np.int32,
# "reload_local_hit": np.int32
},
)
slice_mapping = pd.read_csv(args.path + ".slices.csv")
core_mapping = pd.read_csv(args.path + ".cores.csv")
print("core mapping:\n", core_mapping.to_string())
print("slice mapping:\n", slice_mapping.to_string())
# print("core mapping:\n", core_mapping.to_string())
# print("slice mapping:\n", slice_mapping.to_string())
#print("core {} is mapped to '{}'".format(4, repr(core_mapping.iloc[4])))
# print("core {} is mapped to '{}'".format(4, repr(core_mapping.iloc[4])))
min_time_miss = stats["clflush_miss_n"].min()
max_time_miss = stats["clflush_miss_n"].max()
@ -100,15 +101,23 @@ def remap_core(key):
return remap
def plot(filename, g=None):
if args.no_plot:
if g is not None:
g.savefig(img_dir+filename)
g.savefig(img_dir + filename)
else:
plt.savefig(img_dir+filename)
plt.savefig(img_dir + filename)
# tikzplotlib.save(
# img_dir+filename+".tex",
# axis_width=r'0.175\textwidth',
# axis_height=r'0.25\textwidth'
# )
print(filename, "saved")
plt.close()
plt.show()
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
@ -118,17 +127,15 @@ stats["helper_ht"] = stats["helper_core"].apply(remap_core("hthread"))
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
stats["slice_group"] = stats["hash"].apply(lambda h: slice_mapping["slice_group"].iloc[h])
stats["slice_group"] = stats["hash"].apply(
lambda h: slice_mapping["slice_group"].iloc[h]
)
graph_lower_miss = int((min_time_miss // 10) * 10)
graph_upper_miss = int(((max_time_miss + 9) // 10) * 10)
print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
# print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
g_ = sns.FacetGrid(stats, col="main_core_fixed", row="slice_group")
g_.map(sns.histplot, 'clflush_miss_n', bins=range(graph_lower_miss, graph_upper_miss), color="b", edgecolor="b", alpha=0.2)
plot("medians_miss_grid.png", g=g_)
# also explains remote
# shared needs some thinking as there is something weird happening there.
@ -138,23 +145,19 @@ plot("medians_miss_grid.png", g=g_)
#
print(stats.head())
# print(stats.head())
num_core = len(stats["main_core_fixed"].unique())
print("Found {}".format(num_core))
# print("Found {}".format(num_core))
def miss_topology(main_core_fixed, slice_group, C, h):
return C + h * abs(main_core_fixed - slice_group) + h * abs(slice_group + 1)
def miss_topology_df(x, C, h):
return x.apply(lambda x, C, h: miss_topology(x["main_core_fixed"], x["slice_group"], C, h), args=(C, h), axis=1)
res_miss = optimize.curve_fit(miss_topology_df, stats[["main_core_fixed", "slice_group"]], stats["clflush_miss_n"])
print("Miss topology:")
print(res_miss)
func = lambda x, C, h: miss_topology(x["main_core_fixed"], x["slice_group"], C, h)
return x.apply(func, args=(C, h), axis=1)
memory = -1
@ -164,171 +167,269 @@ gpu_if_any = num_core
def exclusive_hit_topology_gpu(main_core, slice_group, helper_core, C, h1, h2):
round_trip = gpu_if_any - memory
if slice_group <= num_core/2:
if slice_group <= num_core / 2:
# send message towards higher cores first
if helper_core < slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(round_trip - (helper_core - memory))
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(round_trip - (helper_core - memory))
)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(helper_core - slice_group)
)
else:
# send message toward lower cores first
if helper_core > slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(helper_core - slice_group)
)
return r
def exclusive_hit_topology_gpu_df(x, C, h1, h2):
return x.apply(lambda x, C, h1, h2: exclusive_hit_topology_gpu(x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2), args=(C, h1, h2), axis=1)
def func(x, C, h1, h2):
return exclusive_hit_topology_gpu(
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
)
return x.apply(func, args=(C, h1, h2), axis=1)
def exclusive_hit_topology_gpu2(main_core, slice_group, helper_core, C, h1, h2):
round_trip = gpu_if_any + 1 - memory
if slice_group <= num_core/2:
if slice_group <= num_core / 2:
# send message towards higher cores first
if helper_core < slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(round_trip - (helper_core - memory))
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(round_trip - (helper_core - memory))
)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(helper_core - slice_group)
)
else:
# send message toward lower cores first
if helper_core > slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(helper_core - slice_group)
)
return r
def exclusive_hit_topology_gpu2_df(x, C, h1, h2):
return x.apply(lambda x, C, h1, h2: exclusive_hit_topology_gpu2(x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2), args=(C, h1, h2), axis=1)
def func(x, C, h1, h2):
return exclusive_hit_topology_gpu2(
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
)
return x.apply(func, args=(C, h1, h2), axis=1)
# unlikely
def exclusive_hit_topology_nogpu(main_core, slice_group, helper_core, C, h1, h2):
round_trip = (num_core-1) - memory
round_trip = (num_core - 1) - memory
if slice_group <= num_core/2:
if slice_group <= num_core / 2:
# send message towards higher cores first
if helper_core < slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(round_trip - (helper_core - memory))
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(round_trip - (helper_core - memory))
)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(helper_core - slice_group)
)
else:
# send message toward lower cores first
if helper_core > slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
r = (
C
+ h1 * abs(main_core - slice_group)
+ h2 * abs(helper_core - slice_group)
)
return r
def exclusive_hit_topology_nogpu_df(x, C, h1, h2):
return x.apply(lambda x, C, h1, h2: exclusive_hit_topology_nogpu(x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2), args=(C, h1, h2), axis=1)
#res_no_gpu = optimize.curve_fit(exclusive_hit_topology_nogpu_df, stats[["main_core_fixed", "slice_group", "helper_core_fixed"]], stats["clflush_remote_hit"])
#print("Exclusive hit topology (No GPU):")
#print(res_no_gpu)
res_gpu = optimize.curve_fit(exclusive_hit_topology_gpu_df, stats[["main_core_fixed", "slice_group", "helper_core_fixed"]], stats["clflush_remote_hit"])
print("Exclusive hit topology (GPU):")
print(res_gpu)
#res_gpu2 = optimize.curve_fit(exclusive_hit_topology_gpu2_df, stats[["main_core_fixed", "slice_group", "helper_core_fixed"]], stats["clflush_remote_hit"])
#print("Exclusive hit topology (GPU2):")
#print(res_gpu2)
def func(x, C, h1, h2):
return exclusive_hit_topology_nogpu(
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
)
return x.apply(func, args=(C, h1, h2), axis=1)
def remote_hit_topology_2(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group - helper_core) + h * abs(helper_core - main_core)
return (
C
+ h * abs(main_core - slice_group)
+ h * abs(slice_group - helper_core)
+ h * abs(helper_core - main_core)
)
def shared_hit_topology_1(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
return (
C
+ h * abs(main_core - slice_group)
+ h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
)
def plot_func(function, *params):
def plot_it(x, **kwargs):
# plot_x = []
# plot_y = []
# for x in set(x):
# plot_y.append(function(x, *params))
# plot_x = x
print(x)
plot_y = function(x, *params)
sns.lineplot(x, plot_y, **kwargs)
return plot_it
def do_predictions(df):
res_miss = optimize.curve_fit(
miss_topology_df, df[["main_core_fixed", "slice_group"]], df["clflush_miss_n"]
)
# print("Miss topology:")
# print(res_miss)
stats["predicted_miss"] = miss_topology_df(stats, *(res_miss[0]))
res_gpu = optimize.curve_fit(
exclusive_hit_topology_gpu_df,
df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
df["clflush_remote_hit"],
)
# print("Exclusive hit topology (GPU):")
# print(res_gpu)
figure_median_I = sns.FacetGrid(stats, col="main_core_fixed")
figure_median_I.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
figure_median_I.map(sns.lineplot, 'slice_group', 'predicted_miss', color="b")
figure_median_I.set_titles(col_template="$A$ = {col_name}")
figure_median_I.tight_layout()
# res_gpu2 = optimize.curve_fit(
# exclusive_hit_topology_gpu2_df,
# df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
# df["clflush_remote_hit"]
# )
# print("Exclusive hit topology (GPU2):")
# print(res_gpu2)
# import tikzplotlib
# res_no_gpu = optimize.curve_fit(
# exclusive_hit_topology_nogpu_df,
# df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
# df["clflush_remote_hit"]
# )
# print("Exclusive hit topology (No GPU):")
# print(res_no_gpu)
# tikzplotlib.save("fig-median-I.tex", axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plot("medians_miss.png")
df["predicted_miss"] = miss_topology_df(df, *(res_miss[0]))
#stats["predicted_remote_hit_no_gpu"] = exclusive_hit_topology_nogpu_df(stats, *(res_no_gpu[0]))
stats["predicted_remote_hit_gpu"] = exclusive_hit_topology_gpu_df(stats, *(res_gpu[0]))
#stats["predicted_remote_hit_gpu2"] = exclusive_hit_topology_gpu_df(stats, *(res_gpu2[0]))
# df["predicted_remote_hit_no_gpu"] = exclusive_hit_topology_nogpu_df(df, *(res_no_gpu[0]))
df["predicted_remote_hit_gpu"] = exclusive_hit_topology_gpu_df(df, *(res_gpu[0]))
# df["predicted_remote_hit_gpu2"] = exclusive_hit_topology_gpu_df(df, *(res_gpu2[0]))
df_A0 = df[df["main_core_fixed"] == 0]
figure_A0 = sns.FacetGrid(df_A0, col="slice_group")
figure_A0.map(sns.scatterplot, "helper_core_fixed", "clflush_remote_hit", color="r")
figure_A0.map(
sns.lineplot, "helper_core_fixed", "predicted_remote_hit_gpu", color="r"
)
figure_A0.set_titles(col_template="$S$ = {col_name}")
plot("medians_remote_hit.png")
g2 = sns.FacetGrid(df, row="main_core_fixed", col="slice_group")
g2.map(sns.scatterplot, "helper_core_fixed", "clflush_remote_hit", color="r")
g2.map(sns.lineplot, "helper_core_fixed", "predicted_remote_hit_gpu", color="r")
# g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu2', color="g")
# g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_no_gpu', color="g")
plot("medians_remote_hit_grid.png", g=g2)
stats_A0 = stats[stats["main_core_fixed"] == 0]
figure_median_E_A0 = sns.FacetGrid(stats_A0, col="slice_group")
figure_median_E_A0.map(sns.scatterplot, 'helper_core_fixed', 'clflush_remote_hit', color="r")
figure_median_E_A0.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu', color="r")
figure_median_E_A0.set_titles(col_template="$S$ = {col_name}")
# tikzplotlib.save("fig-median-E-A0.tex", axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
plot("medians_remote_hit.png")
g = sns.FacetGrid(stats, row="main_core_fixed")
g.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
plot("medians_miss_v_localhit_core.png", g=g)
g0 = sns.FacetGrid(stats, row="slice_group")
g0.map(sns.scatterplot, 'main_core_fixed', 'clflush_miss_n', color="b")
g0.map(sns.scatterplot, 'main_core_fixed', 'clflush_local_hit_n', color="g") # this gives away the trick I think !
# possibility of sending a general please discard this everyone around one of the ring + wait for ACK - direction depends on the core.
plot("medians_miss_v_localhit_slice.png", g=g0)
g2 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g2.map(sns.scatterplot, 'helper_core_fixed', 'clflush_remote_hit', color="r")
g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu', color="r")
#g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu2', color="g")
#g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_no_gpu', color="g")
#g2.map(plot_func(exclusive_hit_topology_nogpu_df, *(res_no_gpu[0])), 'helper_core_fixed', color="g")
plot("medians_remote_hit_grid.png", g=g2)
if args.rslice:
def rslice():
for core in stats["main_core_fixed"].unique():
os.makedirs(img_dir+f"slices{core}", exist_ok=True)
for slice in stats["slice_group"].unique():
df = stats[(stats["slice_group"] == slice) & (stats["main_core_fixed"] == core)]
fig = sns.scatterplot(df, x="helper_core_fixed", y="clflush_remote_hit", color="r")
fig.set(title=f"main_core={core} slice={slice}")
plt.savefig(img_dir+f"slices{core}/"+str(slice)+".png")
os.makedirs(img_dir + f"slices{core}", exist_ok=True)
for slice_ in stats["slice_group"].unique():
df = stats[
(stats["slice_group"] == slice_) & (stats["main_core_fixed"] == core)
]
fig = sns.scatterplot(
df, x="helper_core_fixed", y="clflush_remote_hit", color="r"
)
fig.set(title=f"main_core={core} slice={slice_}")
plt.savefig(img_dir + f"slices{core}/" + str(slice_) + ".png")
plt.close()
g3 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g3.map(sns.scatterplot, 'helper_core_fixed', 'clflush_shared_hit', color="y")
plot("medians_sharedhit.png", g=g3)
# more ideas needed
def facet_grid(
df, row, col, third,
draw_fn=sns.scatterplot,
shown=[
"clflush_shared_hit",
"clflush_remote_hit",
"clflush_local_hit_n",
"clflush_miss_n",
],
colors=["y", "r", "g", "b"],
title=None,
):
"""
Creates a facet grid showing all points
"""
grid = sns.FacetGrid(df, row=row, col=col)
for i, el in enumerate(shown):
grid.map(draw_fn, third, el, color=colors[i % len(colors)])
if title is not None:
plot(title, g=grid)
return grid
def all_facets(df, id_, *args, **kwargs):
"""
df : panda dataframe
id_: the str to append to filenames
"""
facet_grid(
df, "main_core_fixed", "helper_core_fixed", "slice_group",
title=f"medians_facet_{id_}s.png", *args, **kwargs
)
facet_grid(
df, "helper_core_fixed", "slice_group", "main_core_fixed",
title=f"medians_facet_{id}c.png", *args, **kwargs
)
facet_grid(
df, "slice_group", "main_core_fixed", "helper_core_fixed",
title=f"medians_facet_{id}h.png", *args, **kwargs
)
if args.rslice:
rslice()
do_predictions(stats)
all_facets(stats, "")
for main in (0, 1):
for helper in (0, 1):
print(f"Doing all facets {main}x{helper}")
filtered_df = stats[
(stats["main_core_fixed"] // (num_core / 2) == main)
& (stats["helper_core_fixed"] // (num_core / 2) == helper)
]
all_facets(filtered_df, f"m{main}h{helper}_")