Add --no-slice-remap
Split data if needed
This commit is contained in:
parent
80f559be3a
commit
2610b0ea1d
@ -76,12 +76,21 @@ parser.add_argument(
|
||||
help="Don't compute figures, just create .stats.csv file"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--no-slice-remap",
|
||||
dest="slice_remap",
|
||||
action="store_false",
|
||||
default=True,
|
||||
help="Don't remap the slices"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
img_dir = os.path.dirname(args.path)+"/figs/"
|
||||
os.makedirs(img_dir, exist_ok=True)
|
||||
|
||||
assert os.path.exists(args.path + ".slices.csv")
|
||||
if args.slice_remap:
|
||||
assert os.path.exists(args.path + ".slices.csv")
|
||||
assert os.path.exists(args.path + ".cores.csv")
|
||||
assert os.path.exists(args.path + "-results_lite.csv.bz2")
|
||||
|
||||
@ -129,8 +138,8 @@ sample_flush_columns = [
|
||||
"clflush_local_hit_n",
|
||||
]
|
||||
|
||||
|
||||
slice_mapping = pd.read_csv(args.path + ".slices.csv")
|
||||
if args.slice_remap:
|
||||
slice_mapping = pd.read_csv(args.path + ".slices.csv")
|
||||
core_mapping = pd.read_csv(args.path + ".cores.csv")
|
||||
|
||||
def remap_core(key):
|
||||
@ -149,8 +158,11 @@ df["helper_core_fixed"] = df["helper_core"].apply(remap_core("core"))
|
||||
df["helper_ht"] = df["helper_core"].apply(remap_core("hthread"))
|
||||
|
||||
|
||||
slice_remap = lambda h: slice_mapping["slice_group"].iloc[h]
|
||||
df["slice_group"] = df["hash"].apply(slice_remap)
|
||||
if args.slice_remap:
|
||||
slice_remap = lambda h: slice_mapping["slice_group"].iloc[h]
|
||||
df["slice_group"] = df["hash"].apply(slice_remap)
|
||||
else:
|
||||
df["slice_group"] = df["hash"]
|
||||
|
||||
|
||||
def get_graphing_bounds():
|
||||
@ -215,20 +227,56 @@ def show_grid(df, col, row, shown=["clflush_miss_n", "clflush_remote_hit", "clfl
|
||||
return g
|
||||
|
||||
def export_stats_csv():
|
||||
def stat(x, key):
|
||||
return wq.median(x["time"], x[key])
|
||||
def get_spread(df, key):
|
||||
filtered_df = df[(df[key] != 0)]
|
||||
mini, maxi = filtered_df["time"].min(), filtered_df["time"].max()
|
||||
return maxi-mini
|
||||
|
||||
def compute_stat(x, key):
|
||||
def compute_median(x):
|
||||
return wq.median(x["time"], x[key])
|
||||
|
||||
filtered_x = x[(x[key] != 0)]
|
||||
mini, maxi = filtered_x["time"].min(), filtered_x["time"].max()
|
||||
|
||||
miss_spread = get_spread(x, "clflush_miss_n")
|
||||
|
||||
if maxi-mini < 3*miss_spread:
|
||||
med = compute_median(x)
|
||||
return [med, med]
|
||||
|
||||
if key == "clflush_remote_hit":
|
||||
"""print(
|
||||
"double for core {}:{}@{}, helper {}:{}@{}".format(
|
||||
x["main_core_fixed"].unique()[0],
|
||||
x["main_ht"].unique()[0],
|
||||
x["main_socket"].unique()[0],
|
||||
x["helper_core_fixed"].unique()[0],
|
||||
x["helper_ht"].unique()[0],
|
||||
x["helper_socket"].unique()[0],
|
||||
)
|
||||
)"""
|
||||
center = mini + (maxi-mini)/2
|
||||
return [compute_median(filtered_x[(filtered_x["time"] < center)]), compute_median(filtered_x[(filtered_x["time"] >= center)])]
|
||||
|
||||
df_grouped = df.groupby(["main_core", "helper_core", "hash"])
|
||||
|
||||
miss = df_grouped.apply(lambda x: compute_stat(x, "clflush_miss_n"))
|
||||
hit_remote = df_grouped.apply(lambda x: compute_stat(x, "clflush_remote_hit"))
|
||||
hit_local = df_grouped.apply(lambda x: compute_stat(x, "clflush_local_hit_n"))
|
||||
hit_shared = df_grouped.apply(lambda x: compute_stat(x, "clflush_shared_hit"))
|
||||
|
||||
miss = df_grouped.apply(stat, "clflush_miss_n")
|
||||
hit_remote = df_grouped.apply(stat, "clflush_remote_hit")
|
||||
hit_local = df_grouped.apply(stat, "clflush_local_hit_n")
|
||||
hit_shared = df_grouped.apply(stat, "clflush_shared_hit")
|
||||
stats = pd.DataFrame({
|
||||
"main_core": miss.index.get_level_values(0),
|
||||
"helper_core": miss.index.get_level_values(1),
|
||||
"hash": miss.index.get_level_values(2),
|
||||
"clflush_miss_n": miss.values,
|
||||
"clflush_remote_hit": hit_remote.values,
|
||||
"clflush_local_hit_n": hit_local.values,
|
||||
"clflush_shared_hit": hit_shared.values
|
||||
})
|
||||
|
||||
stats = miss.reset_index()
|
||||
stats.columns = ["main_core", "helper_core", "hash", "clflush_miss_n"]
|
||||
stats["clflush_remote_hit"] = hit_remote.values
|
||||
stats["clflush_local_hit_n"] = hit_local.values
|
||||
stats["clflush_shared_hit"] = hit_shared.values
|
||||
stats = stats.explode(['clflush_miss_n', 'clflush_remote_hit', 'clflush_local_hit_n', 'clflush_shared_hit'])
|
||||
|
||||
stats.to_csv(args.path + ".stats.csv", index=False)
|
||||
|
||||
@ -247,14 +295,14 @@ if not args.stats:
|
||||
df_main_core_0 = df[df["main_core"] == 0]
|
||||
df_main_core_0.loc[:, ("hash",)] = df["hash"].apply(dict_to_json)
|
||||
|
||||
g = show_grid(df_main_core_0, "helper_core", "hash")
|
||||
plot("helper_grid.png", g=g)
|
||||
g = show_grid(df_main_core_0, "helper_core", "hash", shown=["clflush_miss_n", "clflush_remote_hit"])
|
||||
plot("grid_helper_dual.png", g=g)
|
||||
|
||||
g = show_grid(df, "main_core", "hash")
|
||||
plot("main_grid.png", g=g)
|
||||
g = show_grid(df, "main_core", "hash", shown=["clflush_miss_n", "clflush_remote_hit"])
|
||||
plot("grid_main_dual.png", g=g)
|
||||
|
||||
g = show_grid(df, "main_core", "helper_core")
|
||||
plot("main_helper_grid.png", g=g)
|
||||
g = show_grid(df, "main_core", "helper_core", shown=["clflush_miss_n", "clflush_remote_hit"])
|
||||
plot("grid_main_helper_dual.png", g=g)
|
||||
|
||||
|
||||
if not os.path.exists(args.path + ".stats.csv") or args.stats:
|
||||
|
Loading…
Reference in New Issue
Block a user