Update analyse_{csv,medians}.py
This commit is contained in:
parent
acc4fb6c9a
commit
201fac3837
@ -122,16 +122,16 @@ df = pd.read_csv(args.path + "-results_lite.csv.bz2",
|
||||
print_timed(f"Loaded columns : {list(df.keys())}")
|
||||
|
||||
sample_columns = [
|
||||
"clflush_remote_hit",
|
||||
"clflush_shared_hit",
|
||||
"clflush_miss_f",
|
||||
"clflush_local_hit_f",
|
||||
"clflush_miss_n",
|
||||
"clflush_local_hit_n",
|
||||
"reload_miss",
|
||||
"reload_remote_hit",
|
||||
"reload_shared_hit",
|
||||
"reload_local_hit",
|
||||
"clflush_remote_hit",
|
||||
"clflush_shared_hit",
|
||||
"clflush_miss_f",
|
||||
"clflush_local_hit_f",
|
||||
"clflush_miss_n",
|
||||
"clflush_local_hit_n",
|
||||
"reload_miss",
|
||||
"reload_remote_hit",
|
||||
"reload_shared_hit",
|
||||
"reload_local_hit",
|
||||
]
|
||||
|
||||
sample_flush_columns = [
|
||||
@ -156,12 +156,12 @@ def remap_core(key):
|
||||
|
||||
|
||||
columns = [
|
||||
("main_socket", "main_core", "socket")
|
||||
("main_core_fixed", "main_core", "core")
|
||||
("main_ht", "main_core", "hthread")
|
||||
("helper_socket", "helper_core", "socket")
|
||||
("helper_core_fixed", "helper_core", "core")
|
||||
("helper_ht", "helper_core", "hthread")
|
||||
("main_socket", "main_core", "socket"),
|
||||
("main_core_fixed", "main_core", "core"),
|
||||
("main_ht", "main_core", "hthread"),
|
||||
("helper_socket", "helper_core", "socket"),
|
||||
("helper_core_fixed", "helper_core", "core"),
|
||||
("helper_ht", "helper_core", "hthread"),
|
||||
]
|
||||
for (col, icol, key) in columns:
|
||||
df[col] = df[icol].apply(remap_core(key))
|
||||
@ -171,7 +171,7 @@ for (col, icol, key) in columns:
|
||||
if args.slice_remap:
|
||||
slice_remap = lambda h: slice_mapping["slice_group"].iloc[h]
|
||||
df["slice_group"] = df["hash"].apply(slice_remap)
|
||||
print_timed(f"Column slice_group added")
|
||||
print_timed("Column slice_group added")
|
||||
else:
|
||||
df["slice_group"] = df["hash"]
|
||||
|
||||
@ -240,13 +240,14 @@ def show_grid(df, col, row, shown=["clflush_miss_n", "clflush_remote_hit", "clfl
|
||||
return g
|
||||
|
||||
def export_stats_csv():
|
||||
def get_spread(df, key):
|
||||
filtered_df = df[(df[key] != 0)]
|
||||
mini, maxi = filtered_df["time"].min(), filtered_df["time"].max()
|
||||
return maxi-mini
|
||||
|
||||
def compute_stat(x, key):
|
||||
return wq.median(x["time"], x[key])
|
||||
"""
|
||||
Compute the statistic for 1 helper core/main core/slice/column
|
||||
- median : default, not influenced by errors
|
||||
- average : better accuracy when observing floor steps in the results
|
||||
"""
|
||||
# return wq.median(x["time"], x[key])
|
||||
return np.average(x[key], weights=x["time"])
|
||||
|
||||
df_grouped = df.groupby(["main_core", "helper_core", "hash"])
|
||||
|
||||
|
@ -2,7 +2,6 @@
|
||||
#
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-License-Identifier: MIT
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
@ -108,14 +107,6 @@ min_time_miss = stats["clflush_miss_n"].min()
|
||||
max_time_miss = stats["clflush_miss_n"].max()
|
||||
|
||||
|
||||
def remap_core(key):
|
||||
def remap(core):
|
||||
remapped = core_mapping.iloc[core]
|
||||
return remapped[key]
|
||||
|
||||
return remap
|
||||
|
||||
|
||||
def plot(filename, g=None):
|
||||
if args.no_plot:
|
||||
if g is not None:
|
||||
@ -132,13 +123,29 @@ def plot(filename, g=None):
|
||||
plt.show()
|
||||
|
||||
|
||||
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
|
||||
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
|
||||
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
|
||||
stats["helper_socket"] = stats["helper_core"].apply(remap_core("socket"))
|
||||
stats["helper_core_fixed"] = stats["helper_core"].apply(remap_core("core"))
|
||||
stats["helper_ht"] = stats["helper_core"].apply(remap_core("hthread"))
|
||||
def remap_core(key):
|
||||
column = core_mapping.columns.get_loc(key)
|
||||
def remap(core):
|
||||
return core_mapping.iat[core, column]
|
||||
return remap
|
||||
|
||||
|
||||
columns = [
|
||||
("main_socket", "main_core", "socket"),
|
||||
("main_core_fixed", "main_core", "core"),
|
||||
("main_ht", "main_core", "hthread"),
|
||||
("helper_socket", "helper_core", "socket"),
|
||||
("helper_core_fixed", "helper_core", "core"),
|
||||
("helper_ht", "helper_core", "hthread"),
|
||||
]
|
||||
for (col, icol, key) in columns:
|
||||
stats[col] = stats[icol].apply(remap_core(key))
|
||||
|
||||
#! Remove points where helper_core == main_core but main_ht != helper_ht
|
||||
stats = stats[
|
||||
(stats["main_ht"] == stats["helper_ht"])
|
||||
| (stats["main_core_fixed"] != stats["helper_core_fixed"])
|
||||
]
|
||||
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
|
||||
|
||||
if args.slice_remap:
|
||||
@ -164,216 +171,97 @@ graph_upper_miss = int(((max_time_miss + 9) // 10) * 10)
|
||||
|
||||
# print(stats.head())
|
||||
|
||||
num_core = len(stats["main_core_fixed"].unique())
|
||||
num_core = len(stats["main_core_fixed"].unique())/2
|
||||
# print("Found {}".format(num_core))
|
||||
|
||||
|
||||
def miss_topology(main_core_fixed, slice_group, C, h):
|
||||
return C + h * abs(main_core_fixed - slice_group) + h * abs(slice_group + 1)
|
||||
|
||||
|
||||
def miss_topology_df(x, C, h):
|
||||
func = lambda x, C, h: miss_topology(x["main_core_fixed"], x["slice_group"], C, h)
|
||||
return x.apply(func, args=(C, h), axis=1)
|
||||
|
||||
|
||||
memory = -1
|
||||
gpu_if_any = num_core
|
||||
|
||||
|
||||
def exclusive_hit_topology_gpu(main_core, slice_group, helper_core, C, h1, h2):
|
||||
round_trip = gpu_if_any - memory
|
||||
|
||||
if slice_group <= num_core / 2:
|
||||
# send message towards higher cores first
|
||||
if helper_core < slice_group:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(round_trip - (helper_core - memory))
|
||||
)
|
||||
def ring_distance(x0, x1):
|
||||
"""
|
||||
return (a, b) where `a` is the core distance and `b` the larger "ring step"
|
||||
"""
|
||||
dist = abs(x0-x1)
|
||||
if x0 // (num_core/2) != x1 // (num_core/2):
|
||||
return min(num_core-1-dist, dist-1), 1
|
||||
else:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(helper_core - slice_group)
|
||||
)
|
||||
else:
|
||||
# send message toward lower cores first
|
||||
if helper_core > slice_group:
|
||||
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
|
||||
else:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(helper_core - slice_group)
|
||||
)
|
||||
return r
|
||||
return dist, 0
|
||||
|
||||
def slice_msg_distance(x1, x0):
|
||||
"""
|
||||
Si l'expéditeur est à l'extrémité d'une des lignes, il envoie toujours dans le même sens
|
||||
(vers toute sa ligne d'abord), sinon, il prend le chemin le plus court
|
||||
"""
|
||||
dist = abs(x0-x1)
|
||||
if x0 == 3:
|
||||
dist = (x0-x1+8)%8
|
||||
elif x0 == 4:
|
||||
dist = (x1-x0+8)%8
|
||||
|
||||
if x0 in [0, 3, 4, 7]:
|
||||
if dist > 3:
|
||||
return dist, 1
|
||||
return dist, 0
|
||||
|
||||
return ring_distance(x0, x1)
|
||||
|
||||
|
||||
def exclusive_hit_topology_gpu_df(x, C, h1, h2):
|
||||
def func(x, C, h1, h2):
|
||||
return exclusive_hit_topology_gpu(
|
||||
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
|
||||
)
|
||||
def miss_topology(main_core, slice_group, C, h, H):
|
||||
core, ring = slice_msg_distance(main_core, slice_group)
|
||||
return C + h * core + H*ring
|
||||
|
||||
return x.apply(func, args=(C, h1, h2), axis=1)
|
||||
def miss_topology_df(x, C, h, H):
|
||||
func = lambda x, C, h, H: miss_topology(x["main_core_fixed"], x["slice_group"], C, h, H)
|
||||
return x.apply(func, args=(C, h, H), axis=1)
|
||||
|
||||
|
||||
def exclusive_hit_topology_gpu2(main_core, slice_group, helper_core, C, h1, h2):
|
||||
round_trip = gpu_if_any + 1 - memory
|
||||
def remote_hit_topology(main_core, helper_core, slice_group, C, h, H):
|
||||
core0, ring0 = slice_msg_distance(main_core, slice_group)
|
||||
core1, ring1 = slice_msg_distance(helper_core, slice_group)
|
||||
return C + h*(core0+core1) + H*(ring0+ring1)
|
||||
|
||||
if slice_group <= num_core / 2:
|
||||
# send message towards higher cores first
|
||||
if helper_core < slice_group:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(round_trip - (helper_core - memory))
|
||||
)
|
||||
else:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(helper_core - slice_group)
|
||||
)
|
||||
else:
|
||||
# send message toward lower cores first
|
||||
if helper_core > slice_group:
|
||||
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
|
||||
else:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(helper_core - slice_group)
|
||||
)
|
||||
return r
|
||||
|
||||
|
||||
def exclusive_hit_topology_gpu2_df(x, C, h1, h2):
|
||||
def func(x, C, h1, h2):
|
||||
return exclusive_hit_topology_gpu2(
|
||||
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
|
||||
)
|
||||
|
||||
return x.apply(func, args=(C, h1, h2), axis=1)
|
||||
|
||||
|
||||
# unlikely
|
||||
def exclusive_hit_topology_nogpu(main_core, slice_group, helper_core, C, h1, h2):
|
||||
round_trip = (num_core - 1) - memory
|
||||
|
||||
if slice_group <= num_core / 2:
|
||||
# send message towards higher cores first
|
||||
if helper_core < slice_group:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(round_trip - (helper_core - memory))
|
||||
)
|
||||
else:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(helper_core - slice_group)
|
||||
)
|
||||
else:
|
||||
# send message toward lower cores first
|
||||
if helper_core > slice_group:
|
||||
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
|
||||
else:
|
||||
r = (
|
||||
C
|
||||
+ h1 * abs(main_core - slice_group)
|
||||
+ h2 * abs(helper_core - slice_group)
|
||||
)
|
||||
return r
|
||||
|
||||
|
||||
def exclusive_hit_topology_nogpu_df(x, C, h1, h2):
|
||||
def func(x, C, h1, h2):
|
||||
return exclusive_hit_topology_nogpu(
|
||||
x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2
|
||||
)
|
||||
|
||||
return x.apply(func, args=(C, h1, h2), axis=1)
|
||||
|
||||
|
||||
def remote_hit_topology_2(x, C, h):
|
||||
main_core = x["main_core_fixed"]
|
||||
slice_group = x["slice_group"]
|
||||
helper_core = x["helper_core_fixed"]
|
||||
return (
|
||||
C
|
||||
+ h * abs(main_core - slice_group)
|
||||
+ h * abs(slice_group - helper_core)
|
||||
+ h * abs(helper_core - main_core)
|
||||
)
|
||||
|
||||
|
||||
def shared_hit_topology_1(x, C, h):
|
||||
main_core = x["main_core_fixed"]
|
||||
slice_group = x["slice_group"]
|
||||
helper_core = x["helper_core_fixed"]
|
||||
return (
|
||||
C
|
||||
+ h * abs(main_core - slice_group)
|
||||
+ h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
|
||||
)
|
||||
def remote_hit_topology_df(x, C, h, H):
|
||||
func = lambda x, C, h, H: remote_hit_topology(x["main_core_fixed"], x["helper_core_fixed"], x["slice_group"], C, h, H)
|
||||
return x.apply(func, args=(C, h, H), axis=1)
|
||||
|
||||
|
||||
def do_predictions(df):
|
||||
def plot_predicted_topo(col, row, x_ax, target, pred):
|
||||
title_letter = {
|
||||
"main_core_fixed": "A",
|
||||
"helper_core_fixed": "V",
|
||||
"slice_group": "S"
|
||||
}.get(col, col[0])
|
||||
|
||||
figure_A0 = sns.FacetGrid(df, col=col, row=row)
|
||||
figure_A0.map(sns.scatterplot, x_ax, pred, color="r")
|
||||
figure_A0.map(sns.scatterplot, x_ax, target, color="g", marker="+")
|
||||
figure_A0.set_titles(col_template="$"+title_letter+"$ = {col_name}")
|
||||
plot(f"medians_{pred}_{col}.png")
|
||||
|
||||
|
||||
|
||||
df = df[(df["main_socket"] == 0) & (df["helper_socket"] == 0)]
|
||||
res_miss = optimize.curve_fit(
|
||||
miss_topology_df, df[["main_core_fixed", "slice_group"]], df["clflush_miss_n"]
|
||||
)
|
||||
# print("Miss topology:")
|
||||
# print(res_miss)
|
||||
print("Miss topology:")
|
||||
print(res_miss)
|
||||
|
||||
res_gpu = optimize.curve_fit(
|
||||
exclusive_hit_topology_gpu_df,
|
||||
df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
|
||||
df["clflush_remote_hit"],
|
||||
|
||||
res_remote_hit = optimize.curve_fit(
|
||||
remote_hit_topology_df, df[["main_core_fixed", "helper_core_fixed", "slice_group"]], df["clflush_remote_hit"]
|
||||
)
|
||||
# print("Exclusive hit topology (GPU):")
|
||||
# print(res_gpu)
|
||||
print("Remote hit topology:")
|
||||
print(res_remote_hit)
|
||||
|
||||
# res_gpu2 = optimize.curve_fit(
|
||||
# exclusive_hit_topology_gpu2_df,
|
||||
# df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
|
||||
# df["clflush_remote_hit"]
|
||||
# )
|
||||
# print("Exclusive hit topology (GPU2):")
|
||||
# print(res_gpu2)
|
||||
|
||||
# res_no_gpu = optimize.curve_fit(
|
||||
# exclusive_hit_topology_nogpu_df,
|
||||
# df[["main_core_fixed", "slice_group", "helper_core_fixed"]],
|
||||
# df["clflush_remote_hit"]
|
||||
# )
|
||||
# print("Exclusive hit topology (No GPU):")
|
||||
# print(res_no_gpu)
|
||||
|
||||
df["predicted_miss"] = miss_topology_df(df, *(res_miss[0]))
|
||||
plot_predicted_topo("slice_group", None, "main_core_fixed", "clflush_miss_n", "predicted_miss")
|
||||
plot_predicted_topo("main_core_fixed", None, "slice_group", "clflush_miss_n", "predicted_miss")
|
||||
|
||||
# df["predicted_remote_hit_no_gpu"] = exclusive_hit_topology_nogpu_df(df, *(res_no_gpu[0]))
|
||||
df["predicted_remote_hit_gpu"] = exclusive_hit_topology_gpu_df(df, *(res_gpu[0]))
|
||||
# df["predicted_remote_hit_gpu2"] = exclusive_hit_topology_gpu_df(df, *(res_gpu2[0]))
|
||||
df["predicted_remote_hit"] = remote_hit_topology_df(df, *(res_remote_hit[0]))
|
||||
plot_predicted_topo("slice_group", "helper_core_fixed", "main_core_fixed", "clflush_remote_hit", "predicted_remote_hit")
|
||||
plot_predicted_topo("main_core_fixed", "helper_core_fixed", "slice_group", "clflush_remote_hit", "predicted_remote_hit")
|
||||
|
||||
df_A0 = df[df["main_core_fixed"] == 0]
|
||||
figure_A0 = sns.FacetGrid(df_A0, col="slice_group")
|
||||
figure_A0.map(sns.scatterplot, "helper_core_fixed", "clflush_remote_hit", color="r")
|
||||
figure_A0.map(
|
||||
sns.lineplot, "helper_core_fixed", "predicted_remote_hit_gpu", color="r"
|
||||
)
|
||||
figure_A0.set_titles(col_template="$S$ = {col_name}")
|
||||
plot("medians_remote_hit.png")
|
||||
|
||||
g2 = sns.FacetGrid(df, row="main_core_fixed", col="slice_group")
|
||||
g2.map(sns.scatterplot, "helper_core_fixed", "clflush_remote_hit", color="r")
|
||||
g2.map(sns.lineplot, "helper_core_fixed", "predicted_remote_hit_gpu", color="r")
|
||||
# g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu2', color="g")
|
||||
# g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_no_gpu', color="g")
|
||||
plot("medians_remote_hit_grid.png", g=g2)
|
||||
|
||||
|
||||
def rslice():
|
||||
@ -418,7 +306,14 @@ def facet_grid(
|
||||
for i, el in enumerate(shown):
|
||||
if separate_hthreads:
|
||||
for helper, main in itertools.product((0, 1), (0, 1)):
|
||||
grid.map(draw_fn, third, el+f"_m{main}h{helper}", color=colors[(helper+2*main) % len(colors)])# marker=['+', 'x'][helper])
|
||||
kwargs = {"marker": ['x', '+'][helper]} if draw_fn == sns.scatterplot else {}
|
||||
grid.map(
|
||||
draw_fn,
|
||||
third,
|
||||
el+f"_m{main}h{helper}",
|
||||
color=colors[(helper+2*main) % len(colors)],
|
||||
**kwargs
|
||||
)
|
||||
else:
|
||||
grid.map(draw_fn, third, el, color=colors[i % len(colors)])
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user