Remove double median method
This commit is contained in:
parent
0714489afc
commit
051db5fbeb
@ -3,24 +3,26 @@
|
|||||||
# SPDX-License-Identifier: Apache-2.0
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
# SPDX-License-Identifier: MIT
|
# SPDX-License-Identifier: MIT
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import seaborn as sns
|
|
||||||
#import tikzplotlib
|
|
||||||
import wquantiles as wq
|
|
||||||
import numpy as np
|
|
||||||
import argparse
|
import argparse
|
||||||
|
import warnings
|
||||||
|
import time
|
||||||
|
import json
|
||||||
import sys
|
import sys
|
||||||
import os
|
import os
|
||||||
|
|
||||||
import json
|
import matplotlib.style as mplstyle
|
||||||
import warnings
|
import matplotlib.pyplot as plt
|
||||||
|
import wquantiles as wq
|
||||||
|
import seaborn as sns
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
#import tikzplotlib
|
||||||
|
|
||||||
warnings.filterwarnings('ignore')
|
|
||||||
print("warnings are filtered, enable them back if you are having some trouble")
|
|
||||||
|
|
||||||
sns.set_theme()
|
t = time.time()
|
||||||
|
def print_timed(*args, **kwargs):
|
||||||
|
print(f"[{round(time.time()-t, 1):>8}]", *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
def dict_to_json(d):
|
def dict_to_json(d):
|
||||||
if isinstance(d, dict):
|
if isinstance(d, dict):
|
||||||
@ -86,6 +88,9 @@ parser.add_argument(
|
|||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
warnings.filterwarnings('ignore')
|
||||||
|
print_timed("warnings are filtered, enable them back if you are having some trouble")
|
||||||
|
|
||||||
img_dir = os.path.dirname(args.path)+"/figs/"
|
img_dir = os.path.dirname(args.path)+"/figs/"
|
||||||
os.makedirs(img_dir, exist_ok=True)
|
os.makedirs(img_dir, exist_ok=True)
|
||||||
|
|
||||||
@ -114,7 +119,7 @@ df = pd.read_csv(args.path + "-results_lite.csv.bz2",
|
|||||||
converters={'address': convert64, 'hash': convert8},
|
converters={'address': convert64, 'hash': convert8},
|
||||||
)
|
)
|
||||||
|
|
||||||
print(f"Loaded columns : {list(df.keys())}")
|
print_timed(f"Loaded columns : {list(df.keys())}")
|
||||||
|
|
||||||
sample_columns = [
|
sample_columns = [
|
||||||
"clflush_remote_hit",
|
"clflush_remote_hit",
|
||||||
@ -143,24 +148,30 @@ if args.slice_remap:
|
|||||||
core_mapping = pd.read_csv(args.path + ".cores.csv")
|
core_mapping = pd.read_csv(args.path + ".cores.csv")
|
||||||
|
|
||||||
def remap_core(key):
|
def remap_core(key):
|
||||||
|
column = core_mapping.columns.get_loc(key)
|
||||||
def remap(core):
|
def remap(core):
|
||||||
remapped = core_mapping.iloc[core]
|
return core_mapping.iat[core, column]
|
||||||
return remapped[key]
|
|
||||||
|
|
||||||
return remap
|
return remap
|
||||||
|
|
||||||
|
|
||||||
df["main_socket"] = df["main_core"].apply(remap_core("socket"))
|
columns = [
|
||||||
df["main_core_fixed"] = df["main_core"].apply(remap_core("core"))
|
("main_socket", "main_core", "socket")
|
||||||
df["main_ht"] = df["main_core"].apply(remap_core("hthread"))
|
("main_core_fixed", "main_core", "core")
|
||||||
df["helper_socket"] = df["helper_core"].apply(remap_core("socket"))
|
("main_ht", "main_core", "hthread")
|
||||||
df["helper_core_fixed"] = df["helper_core"].apply(remap_core("core"))
|
("helper_socket", "helper_core", "socket")
|
||||||
df["helper_ht"] = df["helper_core"].apply(remap_core("hthread"))
|
("helper_core_fixed", "helper_core", "core")
|
||||||
|
("helper_ht", "helper_core", "hthread")
|
||||||
|
]
|
||||||
|
for (col, icol, key) in columns:
|
||||||
|
df[col] = df[icol].apply(remap_core(key))
|
||||||
|
print_timed(f"Column {col} added")
|
||||||
|
|
||||||
|
|
||||||
if args.slice_remap:
|
if args.slice_remap:
|
||||||
slice_remap = lambda h: slice_mapping["slice_group"].iloc[h]
|
slice_remap = lambda h: slice_mapping["slice_group"].iloc[h]
|
||||||
df["slice_group"] = df["hash"].apply(slice_remap)
|
df["slice_group"] = df["hash"].apply(slice_remap)
|
||||||
|
print_timed(f"Column slice_group added")
|
||||||
else:
|
else:
|
||||||
df["slice_group"] = df["hash"]
|
df["slice_group"] = df["hash"]
|
||||||
|
|
||||||
@ -172,9 +183,10 @@ def get_graphing_bounds():
|
|||||||
return int(((min(q10s) - 10) // 10) * 10), int(((max(q90s) + 19) // 10) * 10)
|
return int(((min(q10s) - 10) // 10) * 10), int(((max(q90s) + 19) // 10) * 10)
|
||||||
|
|
||||||
|
|
||||||
graph_lower, graph_upper = get_graphing_bounds()
|
mplstyle.use("fast")
|
||||||
print("graphing between {}, {}".format(graph_lower, graph_upper))
|
|
||||||
|
|
||||||
|
graph_lower, graph_upper = get_graphing_bounds()
|
||||||
|
print_timed(f"graphing between {graph_lower}, {graph_upper}")
|
||||||
|
|
||||||
def plot(filename, g=None):
|
def plot(filename, g=None):
|
||||||
if args.no_plot:
|
if args.no_plot:
|
||||||
@ -182,6 +194,7 @@ def plot(filename, g=None):
|
|||||||
g.savefig(img_dir+filename)
|
g.savefig(img_dir+filename)
|
||||||
else:
|
else:
|
||||||
plt.savefig(img_dir+filename)
|
plt.savefig(img_dir+filename)
|
||||||
|
print_timed(f"Saved {filename}")
|
||||||
plt.close()
|
plt.close()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
@ -233,32 +246,8 @@ def export_stats_csv():
|
|||||||
return maxi-mini
|
return maxi-mini
|
||||||
|
|
||||||
def compute_stat(x, key):
|
def compute_stat(x, key):
|
||||||
def compute_median(x):
|
|
||||||
return wq.median(x["time"], x[key])
|
return wq.median(x["time"], x[key])
|
||||||
|
|
||||||
filtered_x = x[(x[key] != 0)]
|
|
||||||
mini, maxi = filtered_x["time"].min(), filtered_x["time"].max()
|
|
||||||
|
|
||||||
miss_spread = get_spread(x, "clflush_miss_n")
|
|
||||||
|
|
||||||
if maxi-mini < 3*miss_spread:
|
|
||||||
med = compute_median(x)
|
|
||||||
return [med, med]
|
|
||||||
|
|
||||||
if key == "clflush_remote_hit":
|
|
||||||
"""print(
|
|
||||||
"double for core {}:{}@{}, helper {}:{}@{}".format(
|
|
||||||
x["main_core_fixed"].unique()[0],
|
|
||||||
x["main_ht"].unique()[0],
|
|
||||||
x["main_socket"].unique()[0],
|
|
||||||
x["helper_core_fixed"].unique()[0],
|
|
||||||
x["helper_ht"].unique()[0],
|
|
||||||
x["helper_socket"].unique()[0],
|
|
||||||
)
|
|
||||||
)"""
|
|
||||||
center = mini + (maxi-mini)/2
|
|
||||||
return [compute_median(filtered_x[(filtered_x["time"] < center)]), compute_median(filtered_x[(filtered_x["time"] >= center)])]
|
|
||||||
|
|
||||||
df_grouped = df.groupby(["main_core", "helper_core", "hash"])
|
df_grouped = df.groupby(["main_core", "helper_core", "hash"])
|
||||||
|
|
||||||
miss = df_grouped.apply(lambda x: compute_stat(x, "clflush_miss_n"))
|
miss = df_grouped.apply(lambda x: compute_stat(x, "clflush_miss_n"))
|
||||||
@ -276,8 +265,6 @@ def export_stats_csv():
|
|||||||
"clflush_shared_hit": hit_shared.values
|
"clflush_shared_hit": hit_shared.values
|
||||||
})
|
})
|
||||||
|
|
||||||
stats = stats.explode(['clflush_miss_n', 'clflush_remote_hit', 'clflush_local_hit_n', 'clflush_shared_hit'])
|
|
||||||
|
|
||||||
stats.to_csv(args.path + ".stats.csv", index=False)
|
stats.to_csv(args.path + ".stats.csv", index=False)
|
||||||
|
|
||||||
|
|
||||||
@ -308,4 +295,4 @@ if not args.stats:
|
|||||||
if not os.path.exists(args.path + ".stats.csv") or args.stats:
|
if not os.path.exists(args.path + ".stats.csv") or args.stats:
|
||||||
export_stats_csv()
|
export_stats_csv()
|
||||||
else:
|
else:
|
||||||
print("Skipping .stats.csv export")
|
print_timed("Skipping .stats.csv export")
|
||||||
|
Loading…
Reference in New Issue
Block a user