dendrobates-t-azureus/cache_utils/2T-opt-2020-07-31/analyse_medians.py

139 lines
4.6 KiB
Python
Raw Normal View History

2020-08-04 14:34:45 +02:00
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sys import exit
import numpy as np
from scipy import optimize
import sys
# TODO
# sys.argv[1] should be the root
# with root-result_lite.csv.bz2 the result
# and .stats.csv
# root.slices a slice mapping - done
# root.cores a core + socket mapping - done -> move to analyse csv ?
#
# Facet plot with actual dot cloud + plot the linear regression
# each row is a slice
# each row is an origin core
# each column a helper core if applicable
stats = pd.read_csv(sys.argv[1] + ".stats.csv",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
"hash": np.int8,
# "time": np.int16,
"clflush_remote_hit": np.float64,
"clflush_shared_hit": np.float64,
# "clflush_miss_f": np.int32,
# "clflush_local_hit_f": np.int32,
"clflush_miss_n": np.float64,
"clflush_local_hit_n": np.float64,
# "reload_miss": np.int32,
# "reload_remote_hit": np.int32,
# "reload_shared_hit": np.int32,
# "reload_local_hit": np.int32
}
)
slice_mapping = pd.read_csv(sys.argv[1] + ".slices.csv")
core_mapping = pd.read_csv(sys.argv[1] + ".cores.csv")
print(core_mapping.to_string())
print(slice_mapping.to_string())
print("core {} is mapped to '{}'".format(4, repr(core_mapping.iloc[4])))
min_time_miss = stats["clflush_miss_n"].min()
max_time_miss = stats["clflush_miss_n"].max()
def remap_core(key):
def remap(core):
remapped = core_mapping.iloc[core]
return remapped[key]
return remap
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
stats["helper_socket"] = stats["helper_core"].apply(remap_core("socket"))
stats["helper_core_fixed"] = stats["helper_core"].apply(remap_core("core"))
stats["helper_ht"] = stats["helper_core"].apply(remap_core("hthread"))
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
stats["slice_group"] = stats["hash"].apply(lambda h: slice_mapping.iloc[h])
graph_lower_miss = int((min_time_miss // 10) * 10)
graph_upper_miss = int(((max_time_miss + 9) // 10) * 10)
print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
2020-08-05 11:11:49 +02:00
g_ = sns.FacetGrid(stats, col="main_core_fixed", row="slice_group")
g_.map(sns.distplot, 'clflush_miss_n', bins=range(graph_lower_miss, graph_upper_miss), color="b")
#g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
plt.show()
2020-08-04 14:34:45 +02:00
g = sns.FacetGrid(stats, row="main_core_fixed")
g.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
g2 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g2.map(sns.scatterplot, 'helper_core_fixed', 'clflush_remote_hit', color="r")
g3 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g3.map(sns.scatterplot, 'helper_core_fixed', 'clflush_shared_hit', color="y")
print(stats.head())
def miss_topology(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group + 1)
res = optimize.curve_fit(miss_topology, stats[["main_core_fixed", "slice_group"]], stats["clflush_miss_n"])
print(res)
def local_hit_topology(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
return C + h * abs(main_core - slice_group)
def remote_hit_topology_1(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group - helper_core)
def remote_hit_topology_2(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group - helper_core) + h * abs(helper_core - main_core)
def shared_hit_topology_1(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
# more ideas needed
plt.show()