2020-05-01 10:24:15 +02:00
|
|
|
import pandas as pd
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import seaborn as sns
|
2020-04-13 11:16:46 +02:00
|
|
|
|
|
|
|
columns = ["Addr", "Hash"]
|
|
|
|
core_number = 8 # FIXME
|
|
|
|
for i in range(0, core_number):
|
|
|
|
for stat in ["Min", "Med", "Max"]:
|
|
|
|
for op in ["Hit", "Miss"]:
|
|
|
|
columns.append(op + str(i) + stat)
|
|
|
|
columns.append("Hmm")
|
2020-05-01 10:24:15 +02:00
|
|
|
df = pd.read_csv("citron-vert/combined.csv", header=0, names=columns)
|
2020-04-13 11:16:46 +02:00
|
|
|
selected_columns = columns[:-1]
|
|
|
|
df = df[selected_columns]
|
|
|
|
print(df.head())
|
|
|
|
|
2020-05-01 10:24:15 +02:00
|
|
|
median_columns = list(filter(lambda s: s.endswith("Med"), columns))
|
|
|
|
|
|
|
|
median_hits_col = list(filter(lambda s: s.startswith("Hit"), median_columns))
|
|
|
|
median_miss_col = list(filter(lambda s: s.startswith("Miss"), median_columns))
|
|
|
|
|
|
|
|
print(list(median_columns))
|
|
|
|
print(list(median_hits_col), list(median_miss_col))
|
|
|
|
|
|
|
|
hashes = df["Hash"].drop_duplicates()
|
|
|
|
print(hashes)
|
|
|
|
|
|
|
|
#def distrib(x, y, **kwargs):
|
|
|
|
# sns.distplot()
|
|
|
|
|
|
|
|
separate_core_df = df.melt(id_vars=["Addr", "Hash"], value_vars=median_hits_col)
|
|
|
|
|
|
|
|
g = sns.FacetGrid(separate_core_df, row="variable")
|
|
|
|
g.map(sns.distplot, "value")
|
|
|
|
plt.figure()
|
|
|
|
|
|
|
|
separate_core_df = df.melt(id_vars=["Addr", "Hash"], value_vars=median_miss_col)
|
|
|
|
g = sns.FacetGrid(separate_core_df, row="variable")
|
|
|
|
g.map(sns.distplot, "value", hist_kws={"range":(75,115)})
|
|
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
#sns.distplot(df["values"], hist_kws={"weights": df["count"]})
|
|
|
|
|
|
|
|
|