69 lines
1.9 KiB
Python
69 lines
1.9 KiB
Python
|
import pandas as pd
|
||
|
import matplotlib.pyplot as plt
|
||
|
import seaborn as sns
|
||
|
from sys import exit
|
||
|
import wquantiles as wq
|
||
|
import numpy as np
|
||
|
|
||
|
from functools import partial
|
||
|
|
||
|
import sys
|
||
|
|
||
|
df = pd.read_csv(sys.argv[1], header=1, names=["Core", "Addr", "Hash", "Time", "ClflushHit", "ClflushMiss"], dtype={"Core": int, "Time": int, "ClflushHit": int, "ClflushMiss": int},
|
||
|
converters={'Addr': partial(int, base=16), 'Hash': partial(int, base=16)},
|
||
|
usecols=["Core", "Addr", "Hash", "Time", "ClflushHit", "ClflushMiss"]
|
||
|
)
|
||
|
|
||
|
print(df.columns)
|
||
|
#df["Hash"] = df["Addr"].apply(lambda x: (x >> 15)&0x3)
|
||
|
|
||
|
print(df.head())
|
||
|
|
||
|
print(df["Hash"].unique())
|
||
|
|
||
|
g = sns.FacetGrid(df, col="Core", row="Hash", legend_out=True)
|
||
|
|
||
|
|
||
|
def custom_hist(x, y1, y2, **kwargs):
|
||
|
sns.distplot(x, range(100, 400), hist_kws={"weights": y1, "histtype":"step"}, kde=False, **kwargs)
|
||
|
kwargs["color"] = "r"
|
||
|
sns.distplot(x, range(100, 400), hist_kws={"weights": y2, "histtype":"step"}, kde=False, **kwargs)
|
||
|
|
||
|
g.map(custom_hist, "Time", "ClflushHit", "ClflushMiss")
|
||
|
# g.map(sns.distplot, "time", hist_kws={"weights": df["clflush_hit"]}, kde=False)
|
||
|
|
||
|
#plt.figure()
|
||
|
|
||
|
plt.show()
|
||
|
exit(0)
|
||
|
|
||
|
def stat(x, key):
|
||
|
return wq.median(x["Time"], x[key])
|
||
|
|
||
|
|
||
|
miss = df.groupby(["Core", "Hash"]).apply(stat, "ClflushMiss")
|
||
|
stats = miss.reset_index()
|
||
|
stats.columns = ["Core", "Hash", "Miss"]
|
||
|
hit = df.groupby(["Core", "Hash"]).apply(stat, "ClflushHit")
|
||
|
stats["Hit"] = hit.values
|
||
|
|
||
|
|
||
|
print(stats.to_string())
|
||
|
|
||
|
g = sns.FacetGrid(stats, row="Core")
|
||
|
|
||
|
g.map(sns.distplot, 'Miss', bins=range(100, 480), color="r")
|
||
|
g.map(sns.distplot, 'Hit', bins=range(100, 480))
|
||
|
plt.show()
|
||
|
|
||
|
#stats["clflush_miss_med"] = stats[[0]].apply(lambda x: x["miss_med"])
|
||
|
#stats["clflush_hit_med"] = stats[[0]].apply(lambda x: x["hit_med"])
|
||
|
#del df[[0]]
|
||
|
#print(hit.to_string(), miss.to_string())
|
||
|
|
||
|
# test = pd.DataFrame({"value" : [0, 5], "weight": [5, 1]})
|
||
|
# plt.figure()
|
||
|
# sns.distplot(test["value"], hist_kws={"weights": test["weight"]}, kde=False)
|
||
|
|
||
|
exit(0)
|