dendrobates-t-azureus/cache_utils/analyse_medians.py

291 lines
11 KiB
Python
Raw Normal View History

2024-05-27 11:51:13 +02:00
# SPDX-FileCopyrightText: 2021 Guillaume DIDIER
#
# SPDX-License-Identifier: Apache-2.0
# SPDX-License-Identifier: MIT
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sys import exit
import numpy as np
from scipy import optimize
import sys
import os
import warnings
warnings.filterwarnings('ignore')
print("warnings are filtered, enable them back if you are having some trouble")
2024-05-27 11:51:13 +02:00
# TODO
# sys.argv[1] should be the root
# with root-result_lite.csv.bz2 the result
# and .stats.csv
# root.slices a slice mapping - done
# root.cores a core + socket mapping - done -> move to analyse csv ?
#
# Facet plot with actual dot cloud + plot the linear regression
# each row is a slice
# each row is an origin core
# each column a helper core if applicable
assert os.path.exists(sys.argv[1] + ".stats.csv")
assert os.path.exists(sys.argv[1] + ".slices.csv")
assert os.path.exists(sys.argv[1] + ".cores.csv")
2024-05-27 11:51:13 +02:00
stats = pd.read_csv(sys.argv[1] + ".stats.csv",
dtype={
"main_core": np.int8,
"helper_core": np.int8,
# "address": int,
"hash": np.int8,
# "time": np.int16,
"clflush_remote_hit": np.float64,
"clflush_shared_hit": np.float64,
# "clflush_miss_f": np.int32,
# "clflush_local_hit_f": np.int32,
"clflush_miss_n": np.float64,
"clflush_local_hit_n": np.float64,
# "reload_miss": np.int32,
# "reload_remote_hit": np.int32,
# "reload_shared_hit": np.int32,
# "reload_local_hit": np.int32
}
)
slice_mapping = pd.read_csv(sys.argv[1] + ".slices.csv")
core_mapping = pd.read_csv(sys.argv[1] + ".cores.csv")
print(core_mapping.to_string())
print(slice_mapping.to_string())
print("core {} is mapped to '{}'".format(4, repr(core_mapping.iloc[4])))
min_time_miss = stats["clflush_miss_n"].min()
max_time_miss = stats["clflush_miss_n"].max()
def remap_core(key):
def remap(core):
remapped = core_mapping.iloc[core]
return remapped[key]
return remap
stats["main_socket"] = stats["main_core"].apply(remap_core("socket"))
stats["main_core_fixed"] = stats["main_core"].apply(remap_core("core"))
stats["main_ht"] = stats["main_core"].apply(remap_core("hthread"))
stats["helper_socket"] = stats["helper_core"].apply(remap_core("socket"))
stats["helper_core_fixed"] = stats["helper_core"].apply(remap_core("core"))
stats["helper_ht"] = stats["helper_core"].apply(remap_core("hthread"))
# slice_mapping = {3: 0, 1: 1, 2: 2, 0: 3}
stats["slice_group"] = stats["hash"].apply(lambda h: slice_mapping["slice_group"].iloc[h])
graph_lower_miss = int((min_time_miss // 10) * 10)
graph_upper_miss = int(((max_time_miss + 9) // 10) * 10)
print("Graphing from {} to {}".format(graph_lower_miss, graph_upper_miss))
g_ = sns.FacetGrid(stats, col="main_core_fixed", row="slice_group")
g_.map(sns.distplot, 'clflush_miss_n', bins=range(graph_lower_miss, graph_upper_miss), color="b")
#g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
plt.show()
# also explains remote
# shared needs some thinking as there is something weird happening there.
#
# M 0 1 2 3 4 5 6 7
#
print(stats.head())
num_core = len(stats["main_core_fixed"].unique())
print("Found {}".format(num_core))
def miss_topology(main_core_fixed, slice_group, C, h):
return C + h * abs(main_core_fixed - slice_group) + h * abs(slice_group + 1)
def miss_topology_df(x, C, h):
return x.apply(lambda x, C, h: miss_topology(x["main_core_fixed"], x["slice_group"], C, h), args=(C, h), axis=1)
res_miss = optimize.curve_fit(miss_topology_df, stats[["main_core_fixed", "slice_group"]], stats["clflush_miss_n"])
print("Miss topology:")
print(res_miss)
memory = -1
gpu_if_any = num_core
def exclusive_hit_topology_gpu(main_core, slice_group, helper_core, C, h1, h2):
round_trip = gpu_if_any - memory
if slice_group <= num_core/2:
# send message towards higher cores first
if helper_core < slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(round_trip - (helper_core - memory))
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
else:
# send message toward lower cores first
if helper_core > slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
return r
def exclusive_hit_topology_gpu_df(x, C, h1, h2):
return x.apply(lambda x, C, h1, h2: exclusive_hit_topology_gpu(x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2), args=(C, h1, h2), axis=1)
def exclusive_hit_topology_gpu2(main_core, slice_group, helper_core, C, h1, h2):
round_trip = gpu_if_any + 1 - memory
if slice_group <= num_core/2:
# send message towards higher cores first
if helper_core < slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(round_trip - (helper_core - memory))
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
else:
# send message toward lower cores first
if helper_core > slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
return r
def exclusive_hit_topology_gpu2_df(x, C, h1, h2):
return x.apply(lambda x, C, h1, h2: exclusive_hit_topology_gpu2(x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2), args=(C, h1, h2), axis=1)
# unlikely
def exclusive_hit_topology_nogpu(main_core, slice_group, helper_core, C, h1, h2):
round_trip = (num_core-1) - memory
if slice_group <= num_core/2:
# send message towards higher cores first
if helper_core < slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(round_trip - (helper_core - memory))
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
else:
# send message toward lower cores first
if helper_core > slice_group:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - memory)
else:
r = C + h1 * abs(main_core - slice_group) + h2 * abs(helper_core - slice_group)
return r
def exclusive_hit_topology_nogpu_df(x, C, h1, h2):
return x.apply(lambda x, C, h1, h2: exclusive_hit_topology_nogpu(x["main_core_fixed"], x["slice_group"], x["helper_core_fixed"], C, h1, h2), args=(C, h1, h2), axis=1)
#res_no_gpu = optimize.curve_fit(exclusive_hit_topology_nogpu_df, stats[["main_core_fixed", "slice_group", "helper_core_fixed"]], stats["clflush_remote_hit"])
#print("Exclusive hit topology (No GPU):")
#print(res_no_gpu)
res_gpu = optimize.curve_fit(exclusive_hit_topology_gpu_df, stats[["main_core_fixed", "slice_group", "helper_core_fixed"]], stats["clflush_remote_hit"])
print("Exclusive hit topology (GPU):")
print(res_gpu)
#res_gpu2 = optimize.curve_fit(exclusive_hit_topology_gpu2_df, stats[["main_core_fixed", "slice_group", "helper_core_fixed"]], stats["clflush_remote_hit"])
#print("Exclusive hit topology (GPU2):")
#print(res_gpu2)
def remote_hit_topology_2(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * abs(slice_group - helper_core) + h * abs(helper_core - main_core)
def shared_hit_topology_1(x, C, h):
main_core = x["main_core_fixed"]
slice_group = x["slice_group"]
helper_core = x["helper_core_fixed"]
return C + h * abs(main_core - slice_group) + h * max(abs(slice_group - main_core), abs(slice_group - helper_core))
def plot_func(function, *params):
def plot_it(x, **kwargs):
# plot_x = []
# plot_y = []
# for x in set(x):
# plot_y.append(function(x, *params))
# plot_x = x
print(x)
plot_y = function(x, *params)
sns.lineplot(x, plot_y, **kwargs)
return plot_it
stats["predicted_miss"] = miss_topology_df(stats, *(res_miss[0]))
figure_median_I = sns.FacetGrid(stats, col="main_core_fixed")
figure_median_I.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
figure_median_I.map(sns.lineplot, 'slice_group', 'predicted_miss', color="b")
figure_median_I.set_titles(col_template="$A$ = {col_name}")
figure_median_I.tight_layout()
# import tikzplotlib
2024-05-27 11:51:13 +02:00
# tikzplotlib.save("fig-median-I.tex", axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
2024-05-27 11:51:13 +02:00
plt.show()
#stats["predicted_remote_hit_no_gpu"] = exclusive_hit_topology_nogpu_df(stats, *(res_no_gpu[0]))
stats["predicted_remote_hit_gpu"] = exclusive_hit_topology_gpu_df(stats, *(res_gpu[0]))
#stats["predicted_remote_hit_gpu2"] = exclusive_hit_topology_gpu_df(stats, *(res_gpu2[0]))
stats_A0 = stats[stats["main_core_fixed"] == 0]
figure_median_E_A0 = sns.FacetGrid(stats_A0, col="slice_group")
figure_median_E_A0.map(sns.scatterplot, 'helper_core_fixed', 'clflush_remote_hit', color="r")
figure_median_E_A0.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu', color="r")
figure_median_E_A0.set_titles(col_template="$S$ = {col_name}")
# tikzplotlib.save("fig-median-E-A0.tex", axis_width=r'0.175\textwidth', axis_height=r'0.25\textwidth')
2024-05-27 11:51:13 +02:00
plt.show()
g = sns.FacetGrid(stats, row="main_core_fixed")
g.map(sns.scatterplot, 'slice_group', 'clflush_miss_n', color="b")
g.map(sns.scatterplot, 'slice_group', 'clflush_local_hit_n', color="g")
g0 = sns.FacetGrid(stats, row="slice_group")
g0.map(sns.scatterplot, 'main_core_fixed', 'clflush_miss_n', color="b")
g0.map(sns.scatterplot, 'main_core_fixed', 'clflush_local_hit_n', color="g") # this gives away the trick I think !
# possibility of sending a general please discard this everyone around one of the ring + wait for ACK - direction depends on the core.
g2 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g2.map(sns.scatterplot, 'helper_core_fixed', 'clflush_remote_hit', color="r")
g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu', color="r")
#g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_gpu2', color="g")
#g2.map(sns.lineplot, 'helper_core_fixed', 'predicted_remote_hit_no_gpu', color="g")
#g2.map(plot_func(exclusive_hit_topology_nogpu_df, *(res_no_gpu[0])), 'helper_core_fixed', color="g")
g3 = sns.FacetGrid(stats, row="main_core_fixed", col="slice_group")
g3.map(sns.scatterplot, 'helper_core_fixed', 'clflush_shared_hit', color="y")
# more ideas needed
plt.show()