50 lines
1.2 KiB
Python
50 lines
1.2 KiB
Python
## Récupération des entrées
|
|
n, m = [int(i) for i in input().split()]
|
|
|
|
# adj = [list() for i in range(n+1)]
|
|
anti_adj = [list() for i in range(n+1)]
|
|
for i in range(m):
|
|
u, v = [int(i) for i in input().split()]
|
|
anti_adj[v].append(u)
|
|
# adj[u].append(v)
|
|
|
|
k = int(input())
|
|
p = [int(i) for i in input().split()]
|
|
|
|
## Initialisation des structures
|
|
dist = [-1 for i in range(n+1)]
|
|
succ = {i+1:set() for i in range(n)}
|
|
size = {i+1:0 for i in range(n)}
|
|
|
|
non_vus = set((i+1 for i in range(n) if i+1 != p[-1]))
|
|
queue = [p[-1]]
|
|
dist[p[-1]] = 0
|
|
|
|
## Calcul des prochains avec leur coût, BFS par la fin
|
|
while len(queue) > 0:
|
|
nextQ = []
|
|
while len(queue) > 0:
|
|
s = queue.pop()
|
|
for pred in anti_adj[s]:
|
|
if pred in non_vus:
|
|
non_vus.remove(pred)
|
|
nextQ.append(pred)
|
|
dist[pred] = dist[s]+1
|
|
if dist[pred] == dist[s]+1:
|
|
succ[pred].add(s)
|
|
size[pred] += 1
|
|
queue = nextQ
|
|
|
|
## Calcul final
|
|
mini, maxi = 0, 0
|
|
position = p[0]
|
|
for i in range(1, k):
|
|
next_pos = p[i]
|
|
if next_pos not in succ[position]:
|
|
mini += 1
|
|
maxi += 1
|
|
elif len(succ[position]) > 1:
|
|
maxi += 1
|
|
position = next_pos
|
|
|
|
print(mini, maxi) |