
EPS 2024-02-05

A. Pursuit
2 seconds, 512 megabytes

You and your friend Ilya are participating in an individual programming
contest consisting of multiple stages. A contestant can get between and

 points, inclusive, for each stage, independently of other contestants.

Points received by contestants in different stages are used for forming
overall contest results. Suppose that stages of the contest are
completed. For each contestant, stages with the highest scores
are selected, and these scores are added up. This sum is the overall
result of the contestant. (Here denotes rounding down.)

For example, suppose stages are completed, and your scores are
. First, stages with the highest

scores are chosen — for example, all stages except for the -nd and the
-th can be chosen. Then your overall result is equal to

.

As of now, stages are completed, and you know the points you and Ilya
got for these stages. However, it is unknown how many more stages will
be held. You wonder what the smallest number of additional stages is,
after which your result might become greater than or equal to Ilya's result,
at least in theory. Find this number!

Input
Each test contains multiple test cases. The first line contains the number
of test cases (). Description of the test cases follows.

The first line of each test case contains a single integer (
) — the number of completed stages.

The second line contains integers () —
your points for the completed stages.

The third line contains integers () —
Ilya's points for the completed stages.

It is guaranteed that the sum of over all test cases does not exceed
.

Output
For each test case print a single integer — the smallest number of
additional stages required for your result to be able to become greater
than or equal to Ilya's result.

If your result is already not less than Ilya's result, print .

input
5
1
100
0
1
0
100
4
20 30 40 50
100 100 100 100
4
10 20 30 40
100 100 100 100
7
7 59 62 52 27 31 55
33 35 50 98 83 80 64

In the first test case, you have scored points for the first stage, while
Ilya has scored . Thus, your overall result () is already not less than
Ilya's result ().

In the second test case, you have scored points for the first stage, while
Ilya has scored . A single stage with an opposite result is enough for
both your and Ilya's overall scores to become equal to .

In the third test case, your overall result is , while
Ilya's result is . After three additional stages
your result might become equal to , while Ilya's result might become
equal to .

In the fourth test case, your overall result after four additional stages might
become equal to , while Ilya's result might become equal to .
Three stages are not enough.

0
100

k

k − ⌊ ⌋k

4

⌊t⌋ t

9
50, 30, 50, 50, 100, 10, 30, 100, 50 7

2
6
50 + 50 + 50 + 100 + 30 + 100 + 50 = 430

n

t 1 ≤ t ≤ 1000

n

1 ≤ n ≤ 105

n , , … ,a1 a2 an 0 ≤ ≤ 100ai

n , , … ,b1 b2 bn 0 ≤ ≤ 100bi

n

105

0

output
0
1
3
4
2

100
0 100

0

0
100

100

30 + 40 + 50 = 120
100 + 100 + 100 = 300

420
400

470 400

B. Koxia and Whiteboards
1 second, 256 megabytes

Kiyora has whiteboards numbered from to . Initially, the -th
whiteboard has the integer written on it.

Koxia performs operations. The -th operation is to choose one of the
whiteboards and change the integer written on it to .

Find the maximum possible sum of integers written on the whiteboards
after performing all operations.

Input
Each test consists of multiple test cases. The first line contains a single
integer () — the number of test cases. The description of
test cases follows.

The first line of each test case contains two integers and (
).

The second line of each test case contains integers (
).

The third line of each test case contains integers (
).

Output
For each test case, output a single integer — the maximum possible sum
of integers written on whiteboards after performing all operations.

n 1 n i

ai

m j

bj

m

t 1 ≤ t ≤ 1000

n m

1 ≤ n, m ≤ 100

n , , … ,a1 a2 an

1 ≤ ≤ai 109

m , , … ,b1 b2 bm

1 ≤ ≤bi 109

m

input
4
3 2
1 2 3
4 5
2 3
1 2
3 4 5
1 1
100
1
5 3
1 1 1 1 1
1000000000 1000000000 1000000000

In the first test case, Koxia can perform the operations as follows:

1. Choose the -st whiteboard and rewrite the integer written on it to
.

2. Choose the -nd whiteboard and rewrite to .

After performing all operations, the numbers on the three whiteboards are
, and respectively, and their sum is . It can be proven that this is

the maximum possible sum achievable.

In the second test case, Koxia can perform the operations as follows:

1. Choose the -nd whiteboard and rewrite to .
2. Choose the -st whiteboard and rewrite to .
3. Choose the -nd whiteboard and rewrite to .

The sum is . It can be proven that this is the maximum
possible sum achievable.

output
12
9
1
3000000002

1
= 4b1

2 = 5b2

4 5 3 12

2 = 3b1

1 = 4b2

2 = 5b3

4 + 5 = 9

C. Rocket
1 second, 256 megabytes

This is an interactive problem.

Natasha is going to fly to Mars. Finally, Natasha sat in the rocket. She
flies, flies... but gets bored. She wishes to arrive to Mars already! So she
decides to find something to occupy herself. She couldn't think of anything
better to do than to calculate the distance to the red planet.

Let's define as the distance to Mars. Unfortunately, Natasha does not
know . But it is known that , where Natasha knows the
number . Besides, and are positive integers.

Natasha can ask the rocket questions. Every question is an integer (
). The correct answer to the question is , if , , if

, and , if . But the rocket is broken — it does not always
answer correctly. Precisely: let the correct answer to the current question
be equal to , then, if the rocket answers this question correctly, then it will
answer , otherwise it will answer .

In addition, the rocket has a sequence of length . Each element of the
sequence is either or . The rocket processes this sequence in the
cyclic order, that is -st element, -nd, -rd, , -th, -th, -st,
-nd, -rd, , -th, -th, . If the current element is , the rocket
answers correctly, if — lies. Natasha doesn't know the sequence , but
she knows its length — .

You can ask the rocket no more than questions.

Help Natasha find the distance to Mars. Assume, that the distance to Mars
does not change while Natasha is asking questions.

Your solution will not be accepted, if it does not receive an answer from
the rocket (even if the distance to Mars is uniquely determined by the
already received rocket's answers).
Input
The first line contains two integers and (,

) — the maximum distance to Mars and the number of
elements in the sequence .

Interaction
You can ask the rocket no more than questions.

To ask a question, print a number () and an end-of-line
character, then do the operation flush and read the answer to the
question.

If the program reads , then the distance is correct and you must
immediately terminate the program (for example, by calling exit(0)). If
you ignore this, you can get any verdict, since your program will continue
to read from the closed input stream.

If at some point your program reads as an answer, it must
immediately end (for example, by calling exit(0)). You will receive the
"Wrong answer" verdict, and this will mean that the request is incorrect or
the number of requests exceeds . If you ignore this, you can get any
verdict, since your program will continue to read from the closed input
stream.

If your program's request is not a valid integer between and
 (inclusive) without leading zeros, then you can get any verdict.

You can get "Idleness limit exceeded" if you don't print anything or if you
forget to flush the output.

To flush the output buffer you can use (after printing a query and end-of-
line):

fflush(stdout) in C++;
System.out.flush() in Java;
stdout.flush() in Python;
flush(output) in Pascal;
See the documentation for other languages.

Hacking

Use the following format for hacking:

In the first line, print integers (,
) — the maximum distance to Mars, the number of elements

in the sequence and the current distance to Mars.

In the second line, enter numbers, each of which is equal to or —
sequence .

The hacked solution will not have access to the number and sequence
.

input
5 2
1
-1
-1
1
0

x
x 1 ≤ x ≤ m

m x m

y

1 ≤ y ≤ m −1 x < y 0
x = y 1 x > y

t

t −t

p n

0 1
1 2 3 … (n − 1) n 1 2

3 … (n − 1) n … 1
0 p

n

60

0

m n 1 ≤ m ≤ 109

1 ≤ n ≤ 30
p

60

y 1 ≤ y ≤ m

0

−2

60

−231

− 1231

3 m, n, x 1 ≤ x ≤ m ≤ 109

1 ≤ n ≤ 30
p

n 0 1
p

x
p

In the example, hacking would look like this:

5 2 3

1 0

This means that the current distance to Mars is equal to , Natasha
knows that it does not exceed , and the rocket answers in order:
correctly, incorrectly, correctly, incorrectly ...

Really:

on the first query () the correct answer is , the rocket answered
correctly: ;

on the second query () the correct answer is , the rocket answered
incorrectly: ;

on the third query () the correct answer is , the rocket answered
correctly: ;

on the fourth query () the correct answer is , the rocket answered
incorrectly: ;

on the fifth query () the correct and incorrect answer is .

output
1
2
4
5
3

3
5

1 1
1

2 1
−1

4 −1
−1

5 −1
1

3 0

D. Flexible String
4.0 s, 256 megabytes

You have a string and a string . Both of the strings have length .
There are at most different characters in the string . You also have
a set . Initially, the set is empty. You can apply the following operation
on the string any number of times:

Choose an index () and a lowercase English letter . Add
 to the set and then replace with .

For example, Let the string be " ". We can do the following
operations:

In the first operation, if you choose and , the character
 will be added to the set . So, the set will be , and the

string will be " ".
In the second operation, if you choose and , the
character will be added to the set . So, the set will be

, and the string will be " ".

You can apply any number of operations on , but in the end, the set
should contain at most different characters. Under this constraint, you
have to maximize the number of integer pairs ()
such that . Here, means the substring of string
starting at index (inclusively) and ending at index (inclusively).

Input
Each test contains multiple test cases. The first line contains the number
of test cases (). The description of the test cases follows.

The first line contains two integers and (,
) — the length of the two strings and the limit on different

characters in the set .

The second line contains the string of length . There is at most
different characters in the string .

The last line contains the string of length .

Both of the strings and contain only lowercase English letters. The
sum of over all test cases doesn't exceed .
Output
For each test case, print a single integer in a line, the maximum number of
pairs satisfying the constraints.

input
6
3 1
abc
abd
3 0
abc
abd
3 1
xbb
xcd
4 1
abcd
axcb
3 10
abc
abd
10 3
lkwhbahuqa
qoiujoncjb

In the first case, we can select index and replace it with character
. All possible pairs will be valid.

In the second case, we can't perform any operation. The valid pairs
 are:

1. " ",
2. " ",
3. " ".

In the third case, we can choose index and index and replace them
with the characters and respectively. The final set will be
having size that satisfies the value of . All possible pairs will be
valid.

a b n
10 a

Q Q
a

i 1 ≤ i ≤ n c

ai Q ai c

a abecca

i = 3 c = x

= ea3 Q Q {e}
a ab ccax––

i = 6 c = s

= aa6 Q Q

{e, a} a abxccs––

a Q

k

(l, r) 1 ≤ l ≤ r ≤ n
a[l, r] = b[l, r] s[l, r] s

l r

t 1 ≤ t ≤ 104

n k 1 ≤ n ≤ 105

0 ≤ k ≤ 10
Q

a n 10
a

b n

a b

n 105

(l, r)

output
6
3
6
6
6
11

i = 3
c = d (l, r)

3
(l, r)

a[1, 1] = b[1, 1] = a

a[1, 2] = b[1, 2] = ab

a[2, 2] = b[2, 2] = b

2 3
c d Q {b}

1 k (l, r)

E_Bonus. Teleporters (Hard Version)
1 second, 256 megabytes

The only difference between the easy and hard versions are the
locations you can teleport to.

Consider the points on the number line. There is a
teleporter located on each of the points . At point , you can
do the following:

Move left one unit: it costs coin.
Move right one unit: it costs coin.
Use a teleporter at point , if it exists: it costs coins. As a result, you
can choose whether to teleport to point or point . Once you
use a teleporter, you can't use it again.

You have coins, and you start at point . What's the most number of
teleporters you can use?

0, 1, … , n + 1
1, 2, … , n i

1
1

i ai

0 n + 1

c 0

Input
The input consists of multiple test cases. The first line contains an integer
 () — the number of test cases. The descriptions of the

test cases follow.

The first line of each test case contains two integers and (
;) — the length of the array and the

number of coins you have respectively.

The following line contains space-separated positive integers
 () — the costs to use the teleporters.

It is guaranteed that the sum of over all test cases does not exceed
.

Output
For each test case, output the maximum number of teleporters you can
use.

input
10
5 6
1 1 1 1 1
8 32
100 52 13 6 9 4 100 35
1 1
5
4 5
4 3 2 1
5 9
2 3 1 4 1
5 8
2 3 1 4 1
4 3
2 3 4 1
4 9
5 4 3 3
2 14
7 5
5 600000000
500000000 400000000 300000000 200000000 100000000

In the first test case, you can move one unit to the right, use the teleporter
at index and teleport to point , move one unit to the left and use
the teleporter at index . You are left with coins,
and wherever you teleport, you won't have enough coins to use another
teleporter. You have used two teleporters, so the answer is two.

In the second test case, you go four units to the right and use the
teleporter to go to , then go three units left and use the teleporter at
index to go to , and finally, you go left four times and use the
teleporter. The total cost will be , and you
used three teleporters.

In the third test case, you don't have enough coins to use any teleporter,
so the answer is zero.

t 1 ≤ t ≤ 1000

n c

1 ≤ n ≤ 2 ⋅ 105 1 ≤ c ≤ 109

n

, , … ,a1 a2 an 1 ≤ ≤ai 109

n

2 ⋅ 105

output
2
3
0
1
3
2
1
1
2
2

1 n + 1
5 6 − 1 − 1 − 1 − 1 = 2

n + 1
6 n + 1

4 + 6 + 3 + 4 + 4 + 9 = 30

F_Bonus. Remove the Bracket
1 second, 256 megabytes

RSJ has a sequence of integers and an integer .
For each of , he chose a pair of non-negative integers

 and such that and .

Now he is interested in the value

Please help him find the minimum possible value he can get by
choosing and optimally. It can be shown that there is always at least
one valid way to choose them.

Input
Each test contains multiple test cases. The first line contains an integer (

) — the number of test cases.

The first line of each test case contains two integers , (
;).

The second line contains integers ().

It is guaranteed that the sum of does not exceed .

Output
For each test case, print the minimum possible value of .

input
10
5 0
2 0 1 3 4
5 1
5 3 4 3 5
7 2
7 6 5 4 3 2 1
5 1
1 2 3 4 5
5 2
1 2 3 4 5
4 0
0 1 1 1
5 5
4 3 5 6 4
4 1
0 2 1 0
3 99999
200000 200000 200000
6 8139
7976 129785 12984 78561 173685 15480

In the first test case, .

In the second test case, .

a n , , … ,a1 a2 an s

, , … ,a2 a3 an−1

xi yi + =xi yi ai (− s) ⋅ (− s) ≥ 0xi yi

F = ⋅ + ⋅ + ⋅ + … + ⋅ + ⋅ .a1 x2 y2 x3 y3 x4 yn−2 xn−1 yn−1 an

F
xi yi

t

1 ≤ t ≤ 104

n s

3 ≤ n ≤ 2 ⋅ 105 0 ≤ s ≤ 2 ⋅ 105

n , , … ,a1 a2 an 0 ≤ ≤ 2 ⋅ai 105

n 2 ⋅ 105

F

output
0
18
32
11
14
0
16
0
40000000000
2700826806

2 ⋅ 0 + 0 ⋅ 1 + 0 ⋅ 3 + 0 ⋅ 4 = 0

5 ⋅ 1 + 2 ⋅ 2 + 2 ⋅ 2 + 1 ⋅ 5 = 18

G_Bonus. The Parade
2 seconds, 512 megabytes

The Berland Army is preparing for a large military parade. It is already
decided that the soldiers participating in it will be divided into rows, and
all rows will contain the same number of soldiers.

k

Of course, not every arrangement of soldiers into rows is suitable.
Heights of all soldiers in the same row should not differ by more than .
The height of each soldier is an integer between and .

For each possible height, you know the number of soldiers having this
height. To conduct a parade, you have to choose the soldiers participating
in it, and then arrange all of the chosen soldiers into rows so that both of
the following conditions are met:

each row has the same number of soldiers,
no row contains a pair of soldiers such that their heights differ by or
more.

Calculate the maximum number of soldiers who can participate in the
parade.
Input
The first line contains one integer () — the number of
test cases. Then the test cases follow.

Each test case begins with a line containing two integers and (
,) — the number of different heights of

soldiers and the number of rows of soldiers in the parade, respectively.

The second (and final) line of each test case contains integers , ,
..., (), where is the number of soldiers having height
 in the Berland Army.

It is guaranteed that the sum of over all test cases does not exceed
.

Output
For each test case, print one integer — the maximum number of soldiers
that can participate in the parade.

input
5
3 4
7 1 13
1 1
100
1 3
100
2 1
1000000000000 1000000000000
4 1
10 2 11 1

Explanations for the example test cases:

1. the heights of soldiers in the rows can be: , ,
, (each list represents a row);

2. all soldiers can march in the same row;
3. soldiers with height in each of rows;
4. all soldiers can march in the same row;
5. all soldiers with height and can march in the same row.

k

1
1 n

k

2

t 1 ≤ t ≤ 10000

n k

1 ≤ n ≤ 30000 1 ≤ k ≤ 1012

n c1 c2

cn 0 ≤ ≤ci 1012 ci

i

n
30000

output
16
100
99
2000000000000
13

[3, 3, 3, 3] [1, 2, 1, 1]
[1, 1, 1, 1] [3, 3, 3, 3]

33 1 3

2 3

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov
The only programming contests Web 2.0 platform

https://codeforces.com/

