Computing systems organization
(Chapitres 1-2-3)

Francesco Bronzino
ArchiSys

m
>
O
=2

e

* Slides based on Tanenbaum, "Structured Computer Organization" 5e

Topics
1. Introduction
2. Computer systems organization

3. The digital logic level

Introduction

Bibliography update
o "Structured Computer Organization." Andrew Tanenbaum and Todd Austin. 6th
Edition. Pearson

e Possible to find the PDF online (wink wink)

Languages, Levels, Virtual Machines

Level n

Level 3

Level 2

Level 1

Level O

Virtual machine Mn, with
machine language Ln

/

Virtual machine M3, with
machine language L3

Virtual machine M2, with
machine language L2

/

Virtual machine M1, with
machine language L1

/

Actual computer MO, with
machine language LO

/

Programs in Ln are
either interpreted by
an interpreter running
on a lower machine, or
are translated to the
machine language of a
lower machine

Programs in L2 are
either interpreted by
interpreters running
on M1 or MO, or are
translated to L1 or LO

Programs in L1 are

either interpreted by

an interpreter running on
MO, or are translated to LO

Programs in LO can be
directly executed by
the electronic circuits

Contemporary Multilevel Machines

Level 5

Level 4

Level 3

Level 2

Level 1

Level O

A six-level computer.

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Partial interpretation (operating system)

Instruction set architecture level

Interpretation (microprogram) or direct execution

Microarchitecture level

Hardware

Digital logic level

The support method for each level is indicated below it.

Evolution of Multilevel Machines
e |Invention of microprogramming
e |nvention of operating system
e Migration of functionality to microcode

e Elimination of microprogramming

Computer Generations

e Zeroth Generation - Mechanical Computers (1642 - 1945)
e First Generation - Vacuum Tubes (1945 - 1955)

e Second Generation - Transistors (1955 - 1965)

e Third Generation - Integrated Circuits (1965 - 1980)

e Fourth Generation - Very Large Scale Integration (1980 - ?)

The Von Neumann Machine

Memory
A A
! ! Input
o | Arithmetic
Con’g{ol logic unit
uni
= =l Output

7

Accumulator

PDP-8 Innovation - Single Bus

CPU

Memory

Console
terminal

Paper
tape I/0

Other
/0

Omnibus

10

Technological and Economic Forces

512M
1,000,000,000 |-
100,000,000 [
10,000,000 |
1,000,000 |-
wn
5 100,000 |-
§ 10,000 |
©
= 1,000 |
100 |
10 |-
1 | | | | | | |

1965 1970 1975 1980 1985 1990 1995 2000

Moore’s law predicts a 60-percent annual increase in the
number of transistors that can be put on a chip.
The data points given in this figure are memory sizes, in bits.

11

Personal Computer

1. Pentium 4 socket
2. 875P Support chip
3. Memory sockets

. AGP connector

. Disk interface
. Gigabit Ethernet

. Five PCl slots ':‘;;E
. USB 2.0 ports

. Cooling technology
. BIOS

O OV 00 N OO0 U1 b

st a0 1183

CPU

. System’ | "

~#nterface’

™

B
X
.

" .8 0
¥ <4 :“!
AR R e

c—| Out-ef Ofder-
. -y Control: *

e

(Pentium 4 socket in the previous image)

13

Computer systems organization

A digital computer consists of an interconnected system of processors,
memories, and input/output devices

14

Central Processing Unit

Central processing unit (CPU)

Control
unit

Arithmetic
logical unit
(ALU)

I/O devices

Registers

——
1]

Main
memory

Disk

Printer

The organization of a simple computer with one CPU and two I/0 devices

Bus

15

Instruction Execution Steps
1. Fetch next instruction from memory into instr. register
2. Change program counter to point to next instruction
3. Determine type of instruction just fetched
4

. If instructions uses word in memory, determine where Fetch word, if needed,
into CPU register

5. Execute the instruction

6. Go to step 1 to begin executing following instruction

16

Interpreter (1)

public class Interp {

static int PC; /l program counter holds address of next instr
static int AC; // the accumulator, a register for doing arithmetic
static int instr; // a holding register for the current instruction
static int instr_type; // the instruction type (opcode)

static int data_loc; // the address of the data, or -1 if none

static int data; // holds the current operand

static boolean run_bit = true; /{ a bit that can be turned off to halt the machine

public static void interpret(int memory|], int starting_address) {
// This procedure interprets programs for a simple machine with instructions having
// one memory operand. The machine has a register AC (accumulator), used for
// arithmetic. The ADD instruction adds an integer in memory to the AC, for example.
/f The interpreter keeps running until the run bit is turned off by the HALT instruction.
// The state of a process running on this machine consists of the memory, the
// program counter, the run bit, and the AC. The input parameters consist of
// of the memory image and the starting address.

An interpreter for a simple computer (written in Java).

17

Interpreter (2)

PC = starting_address;
while (run_bit) {

instr = memory[PC]; // fetch next instruction into instr

PC=PC +1; // increment program counter

instr_type = get_instr_type(instr); // determine instruction type

data_Joc = find_data(instr, instr_type); //locate data (-1 if none)

if (data_loc >= 0) // if data_loc is —1, there is no operand
data = memory[data_loc]; // fetch the data

execute(instr_type, data); // execute instruction

}

private static int get_instr_type(int addr) { ... }
private static int find_data(int instr, int type) { ... }
private static void execute(int type, int data) { ... }

An interpreter for a simple computer (written in Java).

18

Design Principles for Modern Computers

e All instructions directly executed by hardware

Maximize rate at which instructions are issued
Instructions should be easy to decode

Only loads, stores should reference memory

Provide plenty of registers

19

Instruction-Level Parallelism

S1 S2 S3 S4 S5
Instruction Instruction Operand Instruction Write
fetch |—- decode fetch |—— execution back
unit unit unit unit unit
(a)

S1:([1]]]2 41115111611171[118(]]|9

S2: 1 3111411516][[7][8

S3: 2(1131[14]1|5](|6]]|7

S4: 1T1[2]13]|14]]|5]]||6

S5: 11(12]13]]||4]]||5

1 2 4 5 6 7 8 9
Time ——

(a) A five-stage pipeline
(b) The state of each stage as a function of time. Nine clock cycles are illustrated

S1

Superscalar Architectures (1)

Instruction
fetch
unit

S2 S3 S4 S5
Instruction Operand Instruction Write
decode [—> fetch —| execution —> back

unit unit unit unit
Instruction Operand Instruction Write
decode [—> fetch —| execution —> back

unit unit unit unit

Dual five-stage pipelines with a common instruction fetch unit.

21

Superscalar Architectures (2)

S5

Write
back
unit

S4
ALU
ALU
S S2 S3
Instruction Instruction Operand
fetch decode fetch LOAD
unit unit unit
STORE
Floating
point

A superscalar processor with five functional units.

22

Processor-Level Parallelism (1)

Control unit

? Broadcasts instructions

> 8 x 8 Processor/memory grid

Processor

e

Memory /

An array of processors.

23

Processor-Level Parallelism (2)

Local memories

N N

Shared Shared
memory memory

CPU

CPU

CPU

CPU

(@)

(a) A single-bus multiprocessor.
(b) A multicomputer with local memories.

Bus Bus

24

Primary Memory

Address Address 1 Cell Address
OCT T I I T TT] oI T I T ITITITTIT] o[I T IITITIITTITIT]
AT T I T T] I T T T] 1[I I I I I ITITITITITT]
2T TITT1] 2T I TITITIT] o[T I IITITIITITITITIT]
ST I T I T TT] 8T TITTITITTIT] s[ITITIITITITITITITIT]
ACTTTITITT] 40T T T TITTT] 40T T TTITITTITITTITT1]
SCITTITT1] s[ITITITTITTIT] s[OTIITIITITITITITITT1]
6T I T I1I1T1] 6[ITTITITTITTIT] ~ 16 bits =
7O T IT1] 70T TITTTITTTT] (€)
s(ITITTITIT] ~ 12hlls=——==
o[TTTIITIT11] (b)
10T T T ITT11]
M I TTTITTT]
~—— 8 bits ——

(a)

Three ways of organizing a 96-bit memory.

Byte Ordering (1)

Address
0
4
8
12

Big endian Little endian
0 1 2 3 3 2 1 0
4 5 6 7 7 6 5 4
8 9 10 11 11 10 9 8
12 13 14 15 15 14 13 12
—~~——— B —
Byte Byte

~— 32-bit word ——

(a) Big endian memory

—~— 32-bit word ——

Address

0
4
8
12

(b) Little endian memory

26

Byte Ordering (2)

Big endian
OlJ | I |M
4 [S|IM|[I]|T
H]{O0O|O|O
1210100 |21
16[0[(0]|1]|4

Little endian
M[T]J
T I |M[S
O(0O|O(H
0[O0 0 (21
ofo|1|4

12
16

Transfer from
big endian to
little endian

Transfer and

swap

| | M

21

oo |6 | =

O|C|IT|W|<

21

(a) A personal record for a big endian machine.

(b) The same record for a little endian machine.
(c) The result of transferring from big endian to little endian.
(d) The result of byte-swapping (c).

O|O|IT|W| <

0
0
1

12
16

27

Cache Memory

CPU

i

Cache

/

Main
memory

Bus

The cache is logically between the CPU and main memory.

Physically, there are several possible places it could be located.

28

Memory Packaging and Types

32-MB
_memory
chip

——— Connector

A single inline memory module (SIMM) holding 256 MB. Two of the chips control
the SIMM.

29

Memory Hierarchies

/ Cache \
/ Main memory \
/ Magnetic disk \
/ Tape Optical disk \

A five-level memory hierarchy.

Input / Output (1)

Monitor
Hard
CD-ROM ; :
Keyboard e disk drive
D ..
o = gooon
2 Hard
Video Keyboard CD-ROM .
CPU Memory disk
controller controller controller P
Bus

Logical structure of a simple personal computer.

31

Input / Output (2)

Memory bus
CPU VI IIIIys PCI VT TTT T Maln
scS| [cache] bridge memory
bus
;_ I I
-1 SCSI SCSI || SCSI Video Network
7| scanner | | disk [|controller controller| |controller
PCI bus
I | I
Sound Printer ISA
card controller bridge Modem
ISA bus

A typical modern PC with a PCI bus and an ISA bus.

The digital logic level

The computer’s real hardware

33

Overall notions

e The basic elements from which all digital computers are constructed are
amazingly simple!
o Small number of primitive elements combined in innumerable way

e Gates and boolean algebra

e (GGate circuits

e Storing information

34

Gates (1)

e Adigital circuit is one in which only two logical values are present

e Asignal between 0 and 0.5 volt represents one value
o Voltages outside these two ranges are not permitted

e Gates compute various functions of these two-valued signal

35

Transistors

+Vee

3

Collector 5
Vout
Vin

+Ve

% +Vee

¢ Vout

(a) A transistor inverter (b) A NAND gate. (c) ANOR gate.

36

Gates (2)

NOT NAND NOR AND OR
A A A
Ao | X) DX] X) D
B | B B | B
Al X AlB][X AlB][X AlB][x AlB][x
0|1 001 001 0olo]o olo]o
1| o 0111 0l1]0 ol1]o0 ol 1]1
1 o1 1lo]o 1lolo 1101
1110 1110 1111 1111

(@) (b) (c) (d) (e)

The symbols and functional behavior for the five basic gates.

37

Boolean Logic (1)

(a) The truth table for the majority >0

function of three variables.

(b) A circuit for (a).

=|=]|=a|o|=|o|o|o|=2

= |lo|l=|o|=|o(=|o|0

afalala|lo|o|o]o|»
alalolo|l=|—=|olo|lm

—
QO
~

38

Boolean Logic (2)

Method to implement a circuit for any Boolean function:

1. Write down the truth table for the function.

2. Provide inverters to generate the complement of each input.

3. Draw an AND gate for each term with a 1 in the result column.

4. Wire the AND gates to the appropriate inputs.
5. Feed the output of all the AND gates into an OR gate.

39

Integrated circuits

e Circuit designers try to reduce the number of gates in their products
o Reduce the chip area needed to implement them

o Minimize power consumption

o Increase speed

e Gates are not manufactured or sold individually but rather in units called
Integrated Circuits

40

Arithmetic operations

Carry in

Carry Carr
in | Sum outy A \)T\ ’_\)Di Sum
/
/I_/

Yy

Carry out

>
s

= o]l =2 |O| =210 =
—_ | - | = | O] = | O] O

(@) (b)

(a) Truth table for full adder. (b) Circuit for a full adder.

41

Logical unit Carry in

_D—— Output

INVA—
A BE)E >HT~A+B
ENA) —
D o

ENB

wjels

Sum

The Arithmetic Logic Unit OO
A 1-bit ALU |

\
—[>o—[O———¢
F
; > adder ™
F1 DO_D
)
|

A

Decoder
Carry out

42

Memory (1)

S S A B [NOR
0 0 1
0 1 0
1 0 0
1 1 0
R

(c)
((2) NOR latch in state 0. (b) NOR latch in state 1. (c) Truth table for NOR.

43

Memory (2)
e Not all memory works like this
e For example, DRAM uses capacitors

e Much more to say, we stop here...

44

Discussion: my TP1 solution

45

