
The Microarchitecture Level
(Chapitre 4)

Francesco Bronzino
ArchiSys

* Slides based on Tanenbaum, "Structured Computer Organization" 5e

Updates
Course on May 12th, TD on May 11th

Exam on June 2nd

Tomorrow 1h TD + finishing TP 2

2

The microarchitecture level

3

The data path
The job of the microarchitecture level is to implement the Instruction Set
Architecture level above it

Its design depends on the ISA being implemented, as well as the cost and
performance goals of the computer.

RISC designs have simple instructions that can usually be executed in a single clock cycle.

The Core i7 instruction set may require many cycles to execute a single instruction

4

The data path
No general principles; every ISA is a special case.

Hence, we use a specific example instead.

Subset of the Java Virtual Machine called IJVM.

5

The data path
The microarchitecture will contain a microprogram (in ROM),

Fetch, decode, and execute instructions.

We cannot use the Oracle JVM interpreter because we need a tiny
microprogram that drives the individual gates in the actual hardware
efficiently.

The Oracle JVM interpreter was written in C for portability and cannot control
the hardware at all.

6

The data path

7

The data path
The data path of the example
microarchitecture used in this
chapter

8

The data path
PC and MBR are byte registers

N and Z are bit registers

MAR – Memory Address
Register

MDR – Memory Data Register

PC – Program Counter

MBR – Memory Byte Register

9

The data path
SP – Stack pointer

LV – Local Variables

CPP – Constant Pool Pointer

TOS – Top of Stack

OPC – utility register

H – Holding register

10

The data path

Useful combinations of ALU signals and the function performed
11

The data path timing

Timing diagram of one data path cycle
12

Clocks
Only actual clock is C1

The use of delays effectively define C2, C3, etc.

13

Memory operation

Mapping of the bits in MAR to the address bus

14

Microinstructions

The microinstruction format for the Mic-1

15

Microinstruction notes
Next instruction refers to address in control store

JMPC – set is unconditional jump (MBR or NEXT -> MPC)

JAMN – set is jump if N is set (or 0x100)

JAMZ – set if jump if Z is set (or 0x100)

SLL8 – shift left 8

SRA1 – shift right 1

F0, F1, ENA, ENB, INVA, INC – ALU control lines

Write – write memory (32 bit)

Read – read memory (32 bit)

Fetch – get byte of memory

16

Microinstruction Control:
The Mic-1
The complete block
diagram of our example
microarchitecture, the
Mic-1

MPC – Microcode program
counter

MIR – MicroInstruction Register

17

MIC-1 notes

The microcode contains the instructions that translate the instruction set into
operations that control the data path.

One view is that the microcode is an interperter that runs the Instruction Set
code.

The other view is that the microcode is a set of subroutines that are called by
the instructions at the instruction set Architecture level.

18

Microinstruction Control: The Mic-1

A microinstruction with JAMZ set to 1 has two potential successors

19

Stacks

Use of a stack for storing local variables:
(a) While A is active. (b) After A calls B.
(c) After B calls C. (d) After C and B return and A calls D.

20

Stacks

Use of an operand stack for doing an arithmetic computation

21

The IJVM Memory Model

The various parts of the IJVM memory

22

Memory notes
1. Constant Pool – read only

2. Local Variable Frame

3. Operand Stack (compiler guarantees that it will not exceed limits) (SP points to
top of this stack)

4. Method Area Treated as a byte array (Holds program)

23

The IJVM Instruction Set

The IJVM instruction set. The operands byte, const, and varnum
are 1 byte. The operands disp, index, and offset are 2 bytes.

24

The IJVM Instruction Set

(a) Memory before executing INVOKEVIRTUAL. (b) After executing it.
25

The IJVM Instruction Set

(a) Memory before executing IRETURN. (b) After executing it. 26

Compiling Java to IJVM

(a) A Java fragment.
(b) The corresponding Java assembly language.
(c) The IJVM program in hexadecimal.

27

The IJVM Instruction Set

The stack after each instruction

28

Microinstructions and notation

Again Tanenbaum being funny

29

Microinstructions and
notation
All permitted operations. Any of the
above operations may be extended
by adding ‘‘<< 8’’ to them to shift
the result left by 1 byte. For
example, a common operation is H
= MBR << 8.

30

Microinstructions and notation

Why is this operation not possible?

31

Implementation of IJVM Using the Mic-1

The microprogram for the Mic-1 (only 112 microinstructions total) 32

Implementation of IJVM Using the Mic-1

The microprogram for the Mic-1 (only 112 microinstructions total) 33

Implementation of IJVM Using the Mic-1

The microprogram for the Mic-1 (only 112 microinstructions total)

34

Implementation of IJVM Using the Mic-1

The microprogram for the Mic-1 (only 112 microinstructions total)
35

Implementation of IJVM Using the Mic-1

The microprogram for the Mic-1 (only 112 microinstructions total)

36

Implementation of IJVM Using the Mic-1

The BIPUSH instruction format

37

Implementation of IJVM Using the Mic-1

The byte is to be interpreted as a signed integer (already fetched into MBR in
Main1)

Sign-extended to 32 bits and pushed onto the top of the stack.

Sign-extend the byte in MBR to 32 bits, and copy it to MDR. Finally,

SP is incremented and copied to MAR

Written out to the top of stack and to TOS.

Note: before returning to the main program, PC must be incremented and a
fetch operation started

38

Implementation of IJVM Using the Mic-1

(a) ILOAD with a 1-byte index. (b) WIDE ILOAD with a 2-byte index.

Take a look at how to perform these two operations

39

Implementation of IJVM Using the Mic-1

The situation at the start of various microinstructions.
(a) Main1. (b) goto1. c) goto2. (d) goto3. (e) goto4. 40

Speed vs cost
How to increase speed:

1. Reduce the number of clock cycles needed to execute an instruction.

2. Simplify the organization so that the clock cycle can be shorter.

3. Overlap the execution of instructions.
Path length

Potential of adding specialized hardware => Increased cost

Alternatives?

41

Merging the Interpreter Loop with the Microcode

Original microprogram sequence for executing POP

42

Merging the Interpreter Loop with the Microcode

Enhanced microprogram sequence for executing POP

43

A three bus architecture

Mic-1 code for executing ILOAD

44

A three bus architecture

Three-bus code for executing ILOAD

45

Other improvements
Branch prediction

Dynamic branch prediction

Out-of-Order Execution and Register Renaming

Speculative execution

46

