The Microarchitecture Level
(Chapitre 4)

Francesco Bronzino
ArchiSys

m
>
O
=2

i

* Slides based on Tanenbaum, "Structured Computer Organization" 5e

Updates
e Course on May 12th, TD on May 11th
e Exam on June 2nd

e Tomorrow 1h TD + finishing TP 2

The microarchitecture level

The data path

e The job of the microarchitecture level is to implement the Instruction Set
Architecture level above it

e |ts design depends on the ISA being implemented, as well as the cost and
performance goals of the computer.
o RISC designs have simple instructions that can usually be executed in a single clock cycle.

o The Core i7 instruction set may require many cycles to execute a single instruction

The data path
e No general principles; every ISA is a special case.
e Hence, we use a specific example instead.
e Subset of the Java Virtual Machine called [JVM.

The data path

e The microarchitecture will contain a microprogram (in ROM),
e Fetch, decode, and execute instructions.

e We cannot use the Oracle JVM interpreter because we need a tiny

microprogram that drives the individual gates in the actual hardware
efficiently.

e The Oracle JVM interpreter was written in C for portability and cannot control
the hardware at all.

The data path

Since the actual hardware used consists only of the basic components de-
scribed in Chap. 3, in theory, after fully understanding this chapter, the reader
should be able to go out and buy a large bag full of transistors and build this subset
of the JVM machine. Students who successfully accomplish this task will be given
extra credit (and a complete psychiatric examination).

=" MAR
Memolry
contro
l(r)\d < — gm‘—» registers
from <
mee“rlr:ory < — PC ——
—toriai =
...... _SP ——>
The data path
— Control signals
The data path of the example
CPP = 4 Enable onto B bus
microarchitecture used in this i A write G bus to register
chapter S
OPC =
C bus <~—— B bus
|
6 N/
ALU control ALU N

Shifter control
2

The data path

PC and MBR are byte registers
N and Z are bit registers

MAR - Memory Address
Register

MDR - Memory Data Register
PC - Program Counter

MBR - Memory Byte Register

Memory
control
To ~ =% MDR = registers
and A
from <
main
memory < — PC ——>
A
— > ver] 5
s
£\
| v = |
A Control signals
CPP BN ‘f Enable onto B bus
£\
f Write C bus to register
TOS ——>
OPC ——>
C bus <~—— B bus
|
N
6
ALU control ALU N
Z

Shifter control
2

The data path

SP - Stack pointer

LV - Local Variables

CPP - Constant Pool Pointer
TOS - Top of Stack

OPC - utility register

H - Holding register

Memory
control
To ~ =% MDR = registers
and A
from <
main
memory < — PC ——>
A
— > ver] 5
s
£\
| v = |
A Control signals
CPP BN ‘f Enable onto B bus
£\
f Write C bus to register
TOS ——>
OPC ——>
C bus <~—— B bus
|
6 N
ALU control ALU N
Z

Shifter control
? 10

The data path

Useful combinations of ALU signals and the function performed

F, | F, | ENA | ENB | INVA | INC | Function
0 | 1 1 0 0 0 | A

0 | 1 0 1 0 0 |B

0 | 1 1 0 1 0o | A

10 1 1 0 0 | B

1|1 1 1 0 0 | A+B
1|1 1 1 0 1 | A+B+1
1|1 1 0 0 1 | A+1
1|1 0 1 0 1 B+1
1|1 1 1 1 1 B-A
1|1 0 1 1 0 | B-1
1|1 1 0 1 1 | -A

0 | 0 1 1 0 0 | AANDB
0 | 1 1 1 0 0 | AORB
0 | 1 0 0 0 0 |0

1|1 0 0 0 1 1

1|1 0 0 1 0 | -1

11

The data path timing

Shifter
output
Cycle 1 stable
starts
here
[

\

AW§ AX

Ay L AZ

Clock cycle 1 /

Registers loaded
instantaneously from
C bus and memory on
rising edge of clock

Y
Y

- Clock cycle 2

A New MPC used to
-—|oad MIR with next

Y

SVEANG S AN SPEMLARNG I microinstruction here
S~
} A % A .
MP
Set up ALU .
signals and available
to drive shifter here
data path
Drive H Propagation
and from shifter
B bus to registers

Timing diagram of one data path cycle

12

Clocks

e Only actual clock is C1

e The use of delays effectively define C2, C3, etc.

13

Memory operation

32-Bit MAR (counts in words)
Discarded

Mapping of the bits in MAR to the address bus

32-Bit address bus (counts in bytes)

0

0

14

Microinstructions

Bits

9

> Zm
wWZ2m
OTVO
nwOo-
VU | ©
<r
-
QT
m s o
o>
m——XS

> Z—
)& =

NEXT_ADDRESS

(@R v =y
N >
Do
->T0W0W
O>PMm3I|w
TO-mT

o

bus

<

O <

Addr JAM ALU

Mem

o <

B bus registers

0 = MDR
1=PC
2 = MBR
3 = MBRU
4=SP

The microinstruction format for the Mic-1

5=LV

6 = CPP
=108
8 = OPC
9-15 none

15

Microinstruction notes

Next instruction refers to address in control store

JMPC - set is unconditional jump (MBR or NEXT -> MPC)
JAMN - set is jump if N is set (or 0x100)
JAMZ - set if jump if Z is set (or 0x100)

SLL8 - shift left 8

SRA1T - shift right 1

FO, F1, ENA, ENB, INVA, INC - ALU control lines
Write - write memory (32 bit)

Read - read memory (32 bit)

Fetch - get byte of memory

16

Memory control signals (rd, wr, fetch)

3 ¢ 4
P wea | ||| g
Microinstruction Control: g
The Mic-1 = —
el

The complete block o} the icropiograrm
diagram of our example |JMPc| P —

. . Addr |J| ALU Cc [(M|B
microarchitecture, the L
Mic-1 JAMN/JAMZ

e MPC - Microcode program B bus e

counter 5 l S /M [t‘_ﬁ-bit flip—flop Sgﬂf;.‘;'
= ‘f Enable

A
. . . ‘ onto
 MIR - Microlnstruction Register er / 8 bus
2

—— f Write
C bus
to register

17

MIC-1 notes

e The microcode contains the instructions that translate the instruction set into
operations that control the data path.

e One view is that the microcode is an interperter that runs the Instruction Set
code.

e The other view is that the microcode is a set of subroutines that are called by
the instructions at the instruction set Architecture level.

18

Microinstruction Control: The Mic-1

Address

0x75

0x92

0x192

Addr

JAM

Data path control bits

0x92

001

JAMZ bit set

One of
these

will follow
0x75
depending
onZ

S

A microinstruction with JAMZ set to 1 has two potential successors

F=(JAMZ AND Z) OR (JAMN AND N) OR NEXT ADDRESS|8]

19

Stacks

SP — c2

LV — c

SP — b4 b4

b3 b3

b2 b2

LV — b1 b1

SP — a3 108 a3 a3
a2 104 a2 a2

LV — at 100 at aft

(@) (b)

Use of a stack for storing local variables:
(a) While A is active. (b) After A calls B.
(c) After B calls C.

SP —

d5

d4

d3

d2

LV ——

d1

a3

a2

ail

(d) After C and B return and A calls D.

(d)

Stacks

SP —

'/////,ag i
a

a2

LV —

al

(a)

SP —

33,

% ///Aag/////z
a

a2

LV —

al

(b)

SP >~y a2 +a37//
a3
a2

LV - ail
(c)

SP - a3
a2

LV — a2 + ad
(d)

Use of an operand stack for doing an arithmetic computation

21

Constant
Pool

The JVM Memory Model

~<~—— CPP

The various parts of the JVM memory

Current
Operand
Stack 3

Current
Local
Variable
Frame 3

~——SP

~—— | \/

Local
Variable
Frame 2

Local
Variable
Frame 1

Method
Area

~—— PC

22

Memory notes
1. Constant Pool - read only
2. Local Variable Frame

3. Operand Stack (compiler guarantees that it will not exceed limits) (SP points to
top of this stack)

4. Method Area Treated as a byte array (Holds program)

23

The IJVM Instruction Set

Hex Mnemonic Meaning

0x10 | BIPUSH byte Push byte onto stack

0x58 | DUP Copy top word on stack and push onto stack
OxA7 | GOTO offset Unconditional branch

0xB60 IADD Pop two words from stack; push their sum
0x7E | IAND Pop two words from stack; push Boolean AND
0x99 | IFEQ offset Pop word from stack and branch if it is zero
0x9B | IFLT offset Pop word from stack and branch if it is less than zero
0x9F | IF_ICMPEQ offset Pop two words from stack; branch if equal

0x84 | IINC varmum const Add a constant to a local variable

0x15 | ILOAD varmum Push local variable onto stack

0xB6 | INVOKEVIRTUAL disp Invoke a method

0x80 | IOR Pop two words from stack; push Boolean OR
OxAC | IRETURN Retum from method with integer value

0x36 | ISTORE vamum Pop word from stack and store in local variable
Oxe64 | ISUB Pop two words from stack; push their difference
0x13 | LDC_W index Push constant from constant pool onto stack
Ox00 | NOP Do nothing

0x57 | POP Delete word on top of stack

Ox5F | SWAP Swap the two top words on the stack

OxC4 | WIDE Prefix instruction; next instruction has a 16-bit index

The IJVM instruction set. The operands byte, const, and varnum
are 1 byte. The operands disp, index, and offset are 2 bytes.

The IJVM Instruction Set

Stack after
INVOKEVIRTUAL

Caller's LV ~<— SP
> Caller's PC

Space for
Stack before caller's local
INVOKEVIRTUAL variables

Parameter3 |<—SP Stack base Parameter 3
Pushed Parameter 2 INVOK?Ef{?I:?TU AL Parameter 2
parameters Parameter 1 Parameter 1
| OBJREF | } ____________ Link ptr ~— LV
(Previous LV Previous LV
Previous PC > Previous PC
Caller's Caller's Caller's
local local local
variable variables Stack base variables
frame Parameter 2 before Parameter 2
Parameter 1 INVOKEVIRTUAL Parameter 1
Linkptr ~ fj<—LV } ____________ Link ptr

()

(@) Memory before executing INVOKEVIRTUAL.

(b)

(b) After executing it.

The IJVM Instruction Set

Caller's
local
variable
frame

(a) Memory before executing IRETURN.

Stack before

IRETURN
Return value [=<—SP
Previous LV
Previous PC
Caller's
local
variables
Parameter 3 St%d; base
Parameter 2 elore Stack after
IRETURN
Parameter 1 IRETURN
Link ptr Ly ¢ { ________ Return value |<—SP
Previous LV Previous LV
Previous PC > Previous PC
Caller's Caller's
local local
variables Stack base variables
Parameter 2 after Parameter 2
Parameter 1 IRETURN Parameter 1
Linkptr | { ___________ Link ptr LY

(a)

(b)

(b) After executing it.

26

Compiling Java to IJVM

=] +k;

if (i ==3)
k =0;

else

j=i-1;

(a)

(a) A Java fragment.

o~ 0 W =

R T T —
WM = O O

L1:

—
I

15 L2:

ILOAD | Ni=j+k
ILOAD k

IADD

ISTORE i

ILOAD i /i (i == 3)
BIPUSH 3

IF_ICMPEQ L1

ILOAD | Ni=j-1
BIPUSH 1

ISUB

ISTORE j

GOTO L2

BIPUSH 0 k=0
ISTORE k

(b)

(b) The corresponding Java assembly language.
(c) The JVM program in hexadecimal.

0x15 0x02

0x15 0x03

0x60

0x36 0x01

0x15 0x01

0x10 0x03

0x9F 0x00 0x0D
0x15 0x02

0x10 0x01

0x64

0x36 0x02

0xA7 0x00 0x07
0x10 0x00

0x36 0x03

(c)

27

The IJVM Instruction Set

K

j

L j+k |

2

—

| i=1 |

10

The stack after each instruction

11

12

14

15

28

Microinstructions and notation

We also want to initiate a read operation, and we want the next instruction to be the
one residing at location 122 in the control store. We might write

ReadRegister = SP, ALU = INC, WSP, Read, NEXT_ADDRESS = 122

where WSP means “write the SP register.”” This notation is complete but hard to
understand. Instead we will combine the operations 1n a natural and intuitive way
to capture the effect of what i1s happening:

SP=SP+1;rd

Let us call our high-level Micro Assembly Language “MAL” (French for
“sick,” something you become if you have to write too much code in it). MAL i1s

Again Tanenbaum being funny

29

Microinstructions and
notation

All permitted operations. Any of the
above operations may be extended
by adding “<< 8" to them to shift
the result left by 1 byte. For
example, a common operation is H
= MBR << 8.

DEST =H

DEST = SOURCE

DEST =H

DEST = SOURCE

DEST = H + SOURCE

DEST =H + SOURCE + 1

DEST=H + 1

DEST = SOURCE + 1

DEST = SOURCE - H

DEST = SOURCE - 1

DEST =-H

DEST = H AND SOURCE

DEST = H OR SOURCE

DEST =0

DEST =1

DEST = -1

30

Microinstructions and notation

MDR = SP+ MDR

Why is this operation not possible?

31

Implementation of IJVM Using the Mic-1

Label Operations Comments

Main 1 PC = PC + 1; fetch; goto (MBR) MBER holds opcode; get next byte; dispatch
nop1 goto Main1 Do nothing

iadd1 MAR=5SP=5SP-1;rd Read in next-to-top word on stack

iadd2 H=TOS H = top of stack

iadd3 MDR = TOS = MDR + H; wr; goto Main Add top two words; write to top of stack

isub1 MAR=5SP=SP-1;rd Read in next-to-top word on stack

isub2 H=TOS H = top of stack

isub3 MDR = TOS = MDR - H; wr; goto Main1 Do subtraction; write to top of stack

iand1 MAR =SP=SP-1:rd Read in next-to-top word on stack

iand2 H=TOS H = top of stack

iand3 MDR =TOS=MDR AND H; wr; goto Main1 Do AND; write to new top of stack

ior1 MAR=SP=SP-1;rd Read in next-to-top word on stack

ior2 H=TOS H = top of stack

ior3 MDR = TOS = MDR OR H; wr; goto Main1 Do OR; write to new top of stack

dup1 MAR =SP=5P +1 Increment SP and copy to MAR

dup2 MDR = TOS; wr; goto Main1 Write new stack word

pop1 MAR=SP=SP-1;rd Read in next-to-top word on stack

pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR: goto Main1 Copy new word to TOS

swap1 MAR =SP -1;rd Set MAR to SP - 1; read 2nd word from stack
swap2 MAR = SP Set MAR to top word

swap3 H = MDR; wr Save TOS in H; write 2nd word to top of stack
swap4 MDR =TQS Copy old TOS to MDR

swap5s MAR =SP - 1; wr Set MAR to SP - 1; write as 2nd word on stack
swap6 TOS = H; gote Main1 Update TOS

The microprogram for the Mic-1 (only 112 microinstructions total)

Implementation of IJVM Using the Mic-1

bipush1
bipush2
bipush3

SP=MAR=5P +1
PC =PC + 1: fetch

MDR = TOS = MBR; wr; goto Main1

MER = the byte to push onto stack
Increment PC, fetch next opcode
Sign-extend constant and push on stack

iloadl
iload2
iload3
iload4
iloads

H=LV

MAR = MBRU + H; rd
MAR =SP =SP + 1

PC = PC + 1; fetch; wr
TOS = MDR; goto Main1

MEBR contains index; copy LVto H

MAR = address of local variable to push
SP points to new top of stack; prepare write
Inc PC; get next opcode; write top of stack
Update TOS

istore
istore2
istore3
istored
istores
istore6

H=LV

MAR = MBRU + H

MDR = TOS; wr
SP=MAR = EP—"; rd
PC = PC + 1; fetch

TOS = MDR; goto Maint

MEBER contains index; Copy LV to H

MAR = address of local variable to store into
Copy TOS to MDR; write word

Read in next-to-top word on stack
Increment PC; fetch next opcode

Update TOS

wide1
wide2

PC = PC +1; fetch;
goto (MBR OR 0x100)

Fetch operand byte or next opcode
Multiway branch with high bit set

wide_iload1
wide_iload2
wide_iload3
wide_iload4

PC =PC + 1; fetch
H=MBRU << 8
H=MBRUORH

MAR =LV + H; rd; goto iload3

MER contains 1st index byte; fetch 2nd
H = 1st index byte shified left 8 bits

H = 16-bit index of local variable

MAR = address of local variable to push

wide_istore1
wide_istore2
wide_istore3
wide_istored

PC = PC + 1; fetch
H=MBRU << 8

H=MBRU ORH

MAR =LV + H; goto istore3

MEBR contains 1st index byte; fetch 2nd

H = 1st index byte shifted left 8 bits

H = 16-bit index of local variable

MAR = address of local variable to store into

ldc_w1
ldc_w2
lde_w3
ldc_w4d

The microprogram for the Mic-1 (only 112 microinstructions total)

PC = PC + 1; fetch

H=MBRU << 8
H=MBRUORH

MAR = H + CPP; rd; goto iload3

MER contains 1st index byte; fetch 2nd
H = 1st index byte << 8

H = 16-bit index into constant pool
MAR = address of constant in pool

33

Implementation of IJVM Using the Mic-1

Label Operations Comments

iinct H=LV MBR contains index; Copy LV to H
linc2 MAR = MBRU + H; rd Copy LV + index to MAR; Read variable
linc3 PC = PC + 1; fetch Fetch constant

iinc4 H=MDR Copy variable to H

lincs PC = PC + 1; fetch Fetch next opcode

iincé MDR = MBR + H; wr; goto Main1 Put sum in MDR; update variable
goto1 OPC=PC-1 Save address of opcode.

goto2 PC = PC + 1; fetch MBR = 1st byte of offset; fetch 2nd byte
goto3 H=MBR <<8 Shift and save signed first byte in H
gotod H=MBRU OR H H = 16-bit branch offset

gotos PC = OPC + H; fetch Add offset to OPC

goto6 goto Main1 Wait for fetch of next opcode

iflt1 MAR=SP=SP-1;rd Read in next-to-top word on stack
iflt2 OPC =TOS Save TOS in OPC temporarily

iflt3 TOS = MDR Put new top of stack in TOS

iflt4 N = OPC; if (N) goto T; else goto F Branch on N bit

ifeq1 MAR=SP=SP-1:;rd Read in next-to-top word of stack
ifeq2 OPC =TOS Save TOS in OPC temporarily
ifeq3 TOS = MDR Put new top of stack in TOS

ifeq4 Z=0PC,; if (Z) goto T, else goto F Branch on Z bit

The microprogram for the Mic-1 (only 112 microinstructions total)

34

Implementation of IJVM Using the Mic-1

if_icmpeq1 MAR=SP=SP-1:rd Read in next-to-top word of stack
if_icmpeq2 MAR=SP =SP -1 Set MAR to read in new top-of-stack
if_icmpeq3 H=MDR; rd Copy second stack word to H

if_icmpeq4 OPC =TOS Save TOS in OPC temporarily

if_icmpeq5 TOS = MDR Put new top of stack in TOS

if_icmpeq6 Z=0PC-H;if (Z) goto T; else goto F If top 2 words are equal, goto T, else goto F
T OPC = PC - 1; goto goto2 Same as goto1; needed for target address
F PC=PC +1 Skip first offset byte

F2 PC = PC + 1; fetch PC now points to next opcode

F3 goto Main1 Wait for fetch of opcode

invokevirtual1 PC = PC + 1; fetch MBR = index byte 1; inc. PC, get 2nd byte
invokevirtual2 H=MBRU << 8 Shift and save first byte in H
invokevirtual3 H=MBRUORH H = offset of method pointer from CPP
invokevirtual4 MAR = CPP + H; rd Get pointer to method from CPP area
invokevirtual5 OPC =PC +1 Save Return PC in OPC temporarily
invokevirtualé PC = MDR; fetch PC points to new method; get param count
invokevirtual7 PC =PC + 1; fetch Fetch 2nd byte of parameter count
invokevirtuals H=MBRU << 8 Shift and save first byte in H

invokevirtual9 H=MBRU OR H H = number of parameters

invokevirtualito PC = PC + 1; fetch Fetch first byte of # locals

invokevirtualtlt TOS=SP-H TOS = address of OBJREF - 1

invokevirtual12
invokevirtual13
invokevirtual14
invokevirtual1s

TOS =MAR=TOS +1
PC = PC + 1: fetch
H=MBRU << 8
H=MBRUORH

TOS = address of OBJREF (new LV)
Fetch second byte of # locals

Shift and save first byte in H

H = # locals

The microprogram for the Mic-1 (only 112 microinstructions total)

35

Implementation of IJVM Using the Mic-1

Label Operations Comments

invokevirtualt6 MDR=SP +H + 1; wr Overwrite OBJREF with link pointer
invokevirtualt7? MAR = SP = MDR,; Set SP, MAR to location to hold old PC
invokevirtualt8 MDR = OPC; wr Save old PC above the local variables
invokevirtualt9 MAR = SP =SP + 1 SP points to location to hold old LV
invokevirtual20 MDR =LV; wr Save old LV above saved PC
invokevirtual21 PC = PC + 1; fetch Fetch first opcode of new method.
invokevirtual22 LV = TOS: aoto Main1 Set LV to point to LV Frame

ireturnt MAR=SP=LV;rd Reset SP, MAR to get link pointer
ireturn2 Wait for read

ireturnd LV = MAR = MDR; rd Set LV to link ptr; get old PC

ireturn4 MAR =LV +1 Set MAR to read old LV

ireturns PC = MDR; rd; fetch Restore PC; fetch next opcode

ireturné MAR = SP Set MAR to write TOS

ireturn7 LV =MDR Restore LV

ireturns MDR = TOS; wr; goto Main1 Save return value on original top of stack

The microprogram for the Mic-1 (only 112 microinstructions total)

Implementation of IJVM Using the Mic-1

BIPUSH
(0x10)

BYTE

The BIPUSH instruction format

37

Implementation of IJVM Using the Mic-1

BIPUSH

(0x10) BYTE

e The byte is to be interpreted as a signed integer (already fetched into MBR in
Main1)

e Sign-extended to 32 bits and pushed onto the top of the stack.

e Sign-extend the byte in MBR to 32 bits, and copy it to MDR. Finally,
e SPisincremented and copied to MAR

e Written out to the top of stack and to TOS.

e Note: before returning to the main program, PC must be incremented and a
fetch operation started

Implementation of IJVM Using the Mic-1

ILOAD INDEX WIDE ILOAD INDEX INDEX
(0x15) (0xC4) (0x15) BYTE 1 BYTE 2
(@) (b)

(a) ILOAD with a 1-byte index. (b) WIDE ILOAD with a 2-byte index.

Take a look at how to perform these two operations

Implementation of IJVM Using the Mic-1

Memory

n+3
n+2
n+1

n

Registers
PC
OPC

MBR

The situation at the start of various microinstructions.

(a) Main1.

(b) goto1.

C) goto2.

(d) goto3.

(e) goto4.

—~——1 Byte——

OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2| |OFFSET BYTE 2
OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 1
GOTO (0xA7) GOTO (0xA7) GOTO (0xA7) GOTO (0xA7) GOTO (0xA7)

n n+1 n+1 n+2 n+2
n n n
OxA7 OxA7 OFFSET BYTE 1| |OFFSET BYTE 1| |OFFSET BYTE 2
OFFSET 1 << 8
(a) (b) (c) (d) (e)

Speed vs cost

How to increase speed:

1. Reduce the number of clock cycles needed to execute an instruction.
2. Simplify the organization so that the clock cycle can be shorter.

3. Overlap the execution of instructions.
o Path length

o Potential of adding specialized hardware => Increased cost

o Alternatives?

41

Merging the Interpreter Loop with the Microcode

Label Operations Comments

pop1 MAR =SP =5P -1; rd Read in next-to-top word on stack

pop2 Wait for new TOS to be read from memory
pop3 TOS = MDR; goto Maint Copy new word to TOS

Main1 PC = PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

Original microprogram sequence for executing POP

42

Merging the Interpreter Loop with the Microcode

Label Operations Comments

pop1 MAR=SP=SP-1; rd Read in next-to-top word on stack
Maini.pop PC =PC + 1; fetch MBR holds opcode; fetch next byte

pop3 TOS = MDR; goto (MBR) Copy new word to TOS; dispatch on opcode

Enhanced microprogram sequence for executing POP

43

A three bus architecture

Label Operations Comments

loadt H=LV MBR contains index; Copy LV to H

load2 MAR =MBRU + H; rd MAR = address of local variable to push
load3 MAR=SP=SP + 1 SP points to new top of stack; prepare write
lload4 PC =PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
load5 TOS = MDR; goto Mainf Update TOS

Maini PC =PC + 1; fetch; goto (MBR) MBR holds opcode; get next byte; dispatch

Mic-1 code for executing ILOAD

44

A three bus architecture

Label Operations Comments

iloadi MAR =MBRU +LV; rd MAR = address of local variable to push
load2 MAR =SP =SP + 1 SP points to new top of stack; prepare write
load3 PC =PC + 1; fetch; wr Inc PC; get next opcode; write top of stack
load4 TOS = MDR Update TOS

load5 PC =PC + 1, fetch; goto (MBR) MBR already holds opcode; fetch index byte

Three-bus code for executing ILOAD

45

Other improvements
e Branch prediction

e Dynamic branch prediction
e Qut-of-Order Execution and Register Renaming

e Speculative execution

46

