* Slides based on Tanenbaum, "Structured Computer Organization" 5e

Instructor Set Architecture

Level
(Chapitre 5)

Francesco Bronzino
ArchiSys L3

I B

' IS B I
I

ENS DE LYON

|ISA Level

The ISA level is the interface between the compilers and the hardware.

FORTRAN 90 C program <- OS Level
program

FORTRAN 90 C program

program compiled compiled

to ISA program to ISA program
Software

SAlevel @ —==@=Z0=0ZlZz‘ M |FEeessssssssasssssmsse

Hardware

ISA program executed
by microprogram or hardware

Hardware

|ISA Level

« Historically it was the first one to be developed

e Interface between software and hardware
* Incorrectly referred to as “the architecture” or “assembly language”

« Still an abstraction!

« Most computers have to be able to execute programs written in
multiple languages

« High-level languages be translated to a common intermediate
form

|ISA Level

« When a new machine comes along, the first question all the
potential customers ask is: “Is it compatible with its
predecessor?”

* The second is: “Can | run my old operating system on it?”

« The third is: “Will it run all my existing application programs
unmoditied?”

e [f any of the answers are “no,” the designers will have a lot of
explaining to do

Backward compatible!

|ISA Level

« What makes a good ISA?

« A good ISA should define a set of instructions that can be
implemented efficiently in current and future technologies

« A good ISA should provide a clean target for compiled code

Properties of the ISA

* The ISA level is defined by how the machine appears to a
machine-language programmer
« The ISA-level code is what a compiler outputs

« What the memory model is
« What registers there are

« What data types and instructions are available

What the ISA is not

« Whether the microarchitecture is microprogrammed or not
« Whether it is pipelined or not

« Whether it is superscalar or not

Not 100% true...

|ISA Level

« Normative sections
« Requirements

e Informative sections
« Help the reader

Operating modes

e Kernel mode

* Intended to run the operating system and allows all instructions to be
executed

« Example: access to cache

e User mode

e Intended to run application programs and does not permit certain
sensitive instructions

e \We focus on user mode

Memory Models

Address

Address
8 Bytes > >

8 Bytes >

A
A

24 T T TS TS NS N N -
16 1918117 116 | 16
15i14i13i12i11i10:{ 9 i 8 | 8 15114113 {12 8

‘\0 \\0

Aligned 8-byte Nonaligned 8-byte
word at address 8 word at address 12

(@) (b)

An 8-byte word in a little-endian memory:.
(a) Aligned. (b) Not aligned.

10

Memory Models: Potential Problems

e Cost of different reference sizes
* 1 byte vs 4 bytes

e Alignment

e Instructions ordering
« What happens if you run a STORE followed by a LOAD?

« Forced ordering
 SYNC instruction

11

Registers

« Some registers are visible at the ISA level
« Which ones?

 Registers visible at the microarchitecture level are not visible at
the ISA level

« TOS and MAR
 Special-purpose registers vs general-purpose registers

12

Instructions

e« The main feature of the ISA level is its set of machine
INstructions.

e Data movement instructions
 LOAD, STORE, MOVE

e Arithmetic instructions
e Boolean instructions
« Comparative instructions

13

ISA discussed in the chapter

e Corei/
e ARM v/
* AVR 8-bit

14

Core i/ operating modes

* Real mode
 Virtual 8086 mode
e Protected mode

15

Y

A AT A Al A
w
P

EAX

Overview of the "“r——"
Core i/ ISA co
Level DH °,° DL EDX

ESI
EDI
EBP

@)
X
Y Y Y Y

ESP

CS
SS

The Corei/'s primary DS
registers. -

FS
GS

EIP

EFLAGS

Overview of the 7 ARM

Register | Alt. name Function

RO-R3 A1-A4 Holds parameters to the procedure being called
R4-R11 V1-V8 Holds local variables for the current procedure
R12 IP Intraprocedure call register (for 32-bit calls)

R13 SP Stack pointer

R14 LR Link register (return address for current function)
R15 PC Program counter

17

Data Types

A variety of different data types are used
 Key issue: hardware support for a particular data type?

« Use case: verity the federal debt (how much the U.S.
government owes everyone)

e 32-bit arithmetic would not work here because the numbers
involved are larger than 232 (about 4 billion)

« One solution is to use two 32-bit integers to represent each
number, giving 64 bits in all.

« If the machine does not support double-precision numbers, all
arithmetic on them will have to be done in software

Data Types on the Core i/

Type 8 Bits | 16 Bits | 32 Bits | 64 Bits
Signed integer X X X X (64-bit)
Unsigned integer X X X X (64-bit)
Binary coded decimal integer X
Floating point X X

The Core i/ numeric data types.
Supported types are marked with x

How many types to support?

« Some programming languages (COBOL) allow decimal numbers
as a data type

« Machines that wish to be COBOL-friendly support decimal
numbers in hardware

« Encode a decimal digit in 4 bits and then packing two decimal digits
per byte

* Binary arithmetic does not work correctly on packed decimal
numbpers
 Special decimal arithmetic-correction instructions are needed

20

Non-numeric data types

« Example?

« Characters

» Boolean

« Not uncommon for the ISA level to have special instruction

21

Instruction Formats

OPCODE OPCODE ADDRESS
(a) (b)

OPCODE |ADDRESS1|ADDRESS?2 OPCODE | ADDR1 | ADDR2 | ADDR3
(c) (d)

Four common instruction formats:
(a) Zero-address instruction. (b) One-address instruction
(c) Two-address instruction. (d) Three-address instruction.

Instruction Formats

e |s designing instruction formats easy?
* NO!
« Many tradeoffs to be considered

 The efficiency of a particular ISA is highly dependent on the
technology with which the computer is to be implemented
* If memory accesses are fast -> stack- based design
* If they are slow -> many registers

« If the bandwidth of an instruction cache is t bps and the average
instruction length is r bits, the cache can deliver at most t/r
instructions per second

23

Instruction Formats

~— 1 Word ——— 1 Word ~— 1 Word ———
Instruction Instruction Instruction Instruction
Instruction Instruction Instruction Instruction | Instr. | Instr.
Instruction Instruction Instruction ,
. . - Instruction
Instruction Instruction Instruction

(@) (b) (c)

Some possible relationships between instruction and word length.

Expanding Opcodes (1)

15 14 13 12

11

10 9

8

L

6 5

4

3

2 1

0

J \

J \

J \

Opgode

Addréss 1

Addr:ass 2

Addrvess 3

An instruction with a 4-bit opcode and three 4-bit address fields.

25

Expanding Opcodes (2}

12-bit ——+(1111_ 1110 0000 zzzz 31 1-address
opcode 1111 1110 0001 zzzz ifstfiiclBRS
16 bits
! 1111 1110 1110 zzzz
i i 1111 1110 1111 zzzz
1 e XOX YYYY 2222 | {5 3.address 1111 1111 0000 2277
P 0010 oo wg 2222 | instructions 1111 1111 0001 zzzz
1100 xxxx vyyyy zzzz
1101 oo Wyyy 2222 1111 1111 1101 zzzz
1110 xxxx yyyy 2zzzz 111 1111 1110 zzzz
St 111 0000 yyyy 2222 | 14 2-address 16-bit —— @TTT 1111 11T 0000| 15 0-address
3 1111 0010 133y 777y | instructions opcode 1 111100011 i structions
) yyyy 1111 1111 1111 0010
1111 1011 yyyy zzzz 1111 1111 1111 1101
1111 1100 vyyyy zzzz 1111 1111 1111 1110
1111 1101 yyyy zzzz 1111 14191 7111 1111
1512118 7 4 3 0 151211 8 7 4 3 0
Bit number Bit number

An expanding opcode allowing 15 three-address instructions, 14
two-address instructions, 31 one-address instructions, and 16 zero-
address instructions. The fields marked xxxx, yyyy,
and zzzz are 4-bit address fields. 26

The Core i7 Instruction Formats

Bytes 0-5 1-2 0-1 0-1 0-4 0-4
PREFIX | OPCODE | MODE SiB DISPLACEMENT | IMMEDIATE
/ ‘ \
Bits 6 11 Bits 2 3 3
INSTRUCTION SCALE| INDEX | BASE

Which operand is source? T
Byte/word

Bits 2 3 3
MOD | REG | RM

The Core i/ instruction formats.

Addressing Modes

« Most instructions have operands, so some way is needed to
specify where they are

« Immediate Addressing

» Direct Addressing

 Register Addressing

* Register Indirect Addressing
* Indexed Addressing

« Based-Indexed Addressing
e Stack Addressing

28

Addressing

MOV R1 4

An immediate instruction for loading 4 into register 1.

MOV R1.,#0 ; accumulate the sum in R1, initially O

MOV R2 #A ; R2 = address of the array A

MOV R3,#A+4096 ; R3 = address of the first word beyond A
LOOP: ADD R1,(R2) ; register indirect through R2 to get operand

ADD R2,#4 ; Increment R2 by one word (4 bytes)

CMP R2,R3 ; are we done yet?

BLT LOOP - If R2 < R3, we are not done, so continue

Register Indirect Addressing: a generic assembly program for
computing the sum of the elements of an array.

29

Addressing

« How about direct addressing?
 Global variables

30

Indexed Addressing

MOV R1,#0 ; accumulate the OR in R1, initially O
MOV R2,#0 ; R2 = index, I, of current product: A[i] AND BJi]
MOV R3,#4096 : B3 = first index value not to use
LOOP: MOV R4,A(R2) : R4 = Al[i]
AND R4,B(R2) ; R4 = A[i] AND BJi]
OR R1,R4 : OR all the Boolean products into R1
ADD R2,#4 ;1=1+ 4 (step in units of 1 word = 4 bytes)
CMP R2,R3 ; are we done yet?
BLT LOOP If R2 < R3, we are not done, so continue

A generic assembly program for computing the OR of
A;AND B; for two 1024-element arrays.

31

Indexed Addressing

MOV R4 R2 124300

A possible representation of MOV R4,A(R2).

Reverse Polish Notation (1)

California

\ New York

Fach railroad car represents one
symbol in the formula to be
converted from infix to reverse
Polish notation.

Texas

1]

o O

33

Reverse Polish Notation (2)

Car at the switch
+ - x [/ A

1 (11111
1111

2 | 2
2 | 2
2 | 2
2 | 2

N | N
NN

I
QERSEESEECS RSN
-

-

e
wlrp(rpdd] o —

1111111

Most recently arrived car
on the Texas line

—

Decision table used by the infix-to-reverse Polish notation
algorithm

Reverse Polish Notation (3)

Infix Reverse Polish notation
A+BxC ABC x+
AxB+C ABxC +
AxB+CxD ABxCDx+
(A+B)/(C-D) AB+CD-/
AxB/C ABxC/

(A+B)xC +D)/(E +F + Q)

AB+CxD+EF+G+/

Some examples of infix expressions and
their reverse Polish notation equivalents.

35

Fvaluation of Reverse Polish notation

Formulas

Step Remaining string Instruction Stack
1 825x+1832x+4-/ BIPUSH 8 8
2 25x+132x+4-/ BIPUSH 2 8, 2
3 Ex+132x+4-/ BIPUSH 5 8,25
4 X+132x+4-/ IMUL 8, 10
5 +132%x+4-/ IADD 18
6 132x+4-/ BIPUSH 1 18, 1
7 32x+4-/ BIPUSH 3 18,1, 3
8 2xX+4 -/ BIPUSH 2 18,1, 3,2
9 X+4 -/ IMUL 18,1, 6
10 +4 -/ IADD 18,7
11 4 -/ BIPUSH 4 18,7, 4
12 —/ ISUB 18,3
13 / IDIV 6

Use of a stack to evaluate a reverse Polish notation formula.

The Core i/ Addressing Modes

MOD

R/M 00 01 10 11

000 | M[EAX] | M[EAX + OFFSETS8] | M[EAX + OFFSET32] | EAX or AL
001 | M[ECX] | M[ECX + OFFSET8] | M[ECX + OFFSET32] | ECX or CL
010 | M[EDX] | M[EDX + OFFSET8] | M[EDX + OFFSET32] | EDX or DL
011 | M[EBX] | M[EBX + OFFSETS8] | M[EBX + OFFSET32] | EBX or BL
100 | SIB SIB with OFFSET8 | SIB with OFFSET32 | ESP or AH
101 | Direct | M[EBP + OFFSET8] | M[EBP + OFFSET32] | EBP or CH
110 | M[ESI] | M[ESI + OFFSET8] | M[ESI + OFFSET32] | ESI or DH

111 | M[EDI] | M[EDI + OFFSET8] | M[EDI + OFFSET32] | EDI or BH

The Core i/ 32-bit addressing modes. M[x]
s the memory word at x.

37

Loop Control

I =1;) I =1;
L1: if (i > n) goto L2;
L1: first-statement; first-statement;
last-statement; last-statement
=1+ 1; I=1+1;
If (I <n) goto L1; goto L1;
L2:
(a) (b)

(a) Test-at-the-end loop.
(b) Test-at-the-beginning loop.

38

Input/Output

* Programmed I/O with busy waiting.
e Interrupt-driven I/0.
« DMA I/0.

39

Input/Output

Character available
Keyboard status

Ready for next character
Display status

Interrupt enabled

Keyboard buffer

Character received

Interrupt enabled

Display buffer

Character to display

Device registers for a simple terminal.

40

Input/Output

}

// Output a block of data to the device
Int status, 1, ready;

for (i = 0; i < count; i++) {

do {
status = in(display_status_reg); // get status
ready = (status >> 7) & 0x01; // isolate ready bit

} while (ready != 1);
out(display_buffer_reg, buf[i]);
}

An example of programmed I/0O.

41

The Core i7 Instructions

Moves

MOV DST,SRC

Move SRC to DST

PUSH SRC

Push SRC onto the stack

POP DST

Pop a word from the stack to DST

XCHG DS1,DS2

Exchange DS1 and DS2

LEA DST,SRC

Load effective addr of SRC into DST

CMOVce DST,SRC

Conditional move

Arithmetic

ADD DST,SRC

Add SRC to DST

SuUB DST,SRC

Subtract SRC from DST

MUL SRC

Multiply EAX by SRC (unsigned)

IMUL SRC

Multiply EAX by SRC (signed)

DIV SRC

Divide EDX:EAX by SRC (unsigned)

IDIV SRC

Divide EDX:EAX by SRC (signed)

ADC DST,SRC

Add SRC to DST, then add carry bit

SBB DST,SRC

Subtract SRC & carry from DST

INC DST

Add 1 to DST

DEC DST

Subtract 1 from DST

NEG DST

Negate DST (subtract it from 0)

A selection of the Core i/ integer instructions.

42

The Core i7 Instructions

Binary coded decimal

DAA

Decimal adjust

DAS

Decimal adjust for subtraction

ASCII adjust for addition

ASCII adjust for subtraction

ASCII adjust for multiplication

ASCII adjust for division

Boolean

AND DST,SRC

Boolean AND SRC into DST

OR DST,SRC

Boolean OR SRC into DST

XOR DST,SRC

Boolean Exclusive OR SRC to DST

NOT DST

Replace DST with 1's complement

Shift/rotate

SAL/SAR DST

Shift DST left/right # bits

SHL/SHR DST #

Logical shift DST left/right # bits

ROL/ROR DST, #

Rotate DST left/right # bits

RCL/RCR DST,#

Rotate DST through carry # bits

A selection of the Core i/ integer instructions.

43

The Core i7 Instructions

Test/compare

TEST SRC1,SRC2

Boolean AND operands, set flags

CMP SRC1,SRC2

Set flags based on SRC1 - SRC2

Transfer of control

JMP ADDR Jump to ADDR

Jxx ADDR Conditional jumps based on flags

CALL ADDR Call procedure at ADDR

RET Return from procedure

IRET Return from interrupt

LOOPxx Loop until condition met

INT n Initiate a software interrupt

INTO Interrupt if overflow bit is set
Strings

LODS Load string

STOS Store string

MOVS Move string

CMPS Compare two strings

SCAS Scan Strings

A selection of the Core i/ integer instructions.

44

The Core i7 Instructions

Condition codes

STC

Set carry bit in EFLAGS register

Miscellaneous

CLC

Clear carry bit in EFLAGS register

CMC

Complement carry bit in EFLAGS

STD

Set direction bit in EFLAGS register

CLD

Clear direction bit in EFLAGS reg

STI

Set interrupt bit in EFLAGS register

CLI

Clear interrupt bit in EFLAGS reg

PUSHFD

Push EFLAGS register onto stack

POPFD

Pop EFLAGS register from stack

LAHF

Load AH from EFLAGS register

SWAP DST Change endianness of DST

cwaQ Extend EAX to EDX:EAX for division
CWDE Extend 16-bit number in AX to EAX
ENTER SIZE,LV Create stack frame with SIZE bytes
LEAVE Undo stack frame built by ENTER
NOP No operation

HLT Halt

IN AL,PORT Input a byte from PORT to AL

OUT PORT,AL QOutput a byte from AL to PORT
WAIT Wait for an interrupt

SAHF

Store AH in EFLAGS register

SRC = source
DST = destination

= shift/rotate count
LV =# locals

A selection of the Core i/ integer instructions.

45

Sequential Flow of Control and
Branches

d

Jumps i
I

Program counter
Program counter

Time Time

(a) (b)

Program counter as a function of time (smoothed).

(a) Without branches. (b) With branches.

46

Recursive Procedures (1)

Peg 1 Peg 2 Peg 3

/ /Y

N N1

@
&2

Initial configuration for the Towers of Hanoi problem for five
disks.

Recursive Procedures (2_)

Initial state <

First move 2 disks
from peg 1 to peg 2

666

The steps required to solve the Towers of Hanoi for three disks.

48

Recursive Procedures (3)

Then move 1 disk

from peg 1 to peg 3)

Finally move 2 disks
from peg 2 to peg 3

The steps required to solve the Towers of Hanoi for three disks.

|

49

Recursive Procedures (4)

public void towers(int n, int i, int j) {
int k;

if (n==1)
System.out.printin("Move a disk from "+ i+ "to " + J);

else {
k=6-1-];
towers(n — 1, i, k);
towers(1, 1, J);
towers(n — 1, k, J);

}
}

A procedure for solving the Towers of Hanoi.

50

Recursive Procedures (5)

Address

SP — k SP == k 1068

Old FP = 1024 Old FP = 1024 | 1064

Return addr Return addr | 1060

j=8 j=2 1056

=1 =1 1052

FR—p= n=1 FP — n=1 1048

SP—» k k=3 k k=3 1044

Old FP =1000 Old FP = 1000 Old FP = 1000 Old FP =1000| 1040

Return addr Return addr Return addr Return addr |1036

j=2 j=2 j=2 j=2 1032

i=1 i=1 i=1 i=1 1028

FP - n=2 > n=2 n=2 Lt n=2 1024

SP — k k=2 k=2 k=2 k=2 1020
Old FP Old FP Old FP OIld FP Old FP 1016

Return addr Return addr Return addr Return addr Return addr |1012

=93 =3 j=38 j=3 j=3 1008

i=1 i=1 i=1 i=1 = 1004

FP—» n=3 > n=3 > n=3 n=3 > n=3 1000

The stack at several points during the execution of Fig. 5-42.

(a)

(b)

(©)

(d)

(e)

51

(a) (b)
Calling Called

o, e Coroutines (1)

A called >
from main
program

When a procedure is called,
execution of the procedure

ERANNEVAVAN

always begins at the first

A returns —=
to main

program statement of the procedure.

52

Coroutines (2)

A called
from main
program

Y

RESUME B
—FESUME A

(a)
[| RESUMEB,
[\%

&\\/\EB,/

LALY,

A returns -
to main

3
Sy,
M
P rog ram

When a coroutine is resumed, execution begins at the

statement where it left off the previous time, not at the
beginning.

Interrupts

RS232 interrupt
priority 5

Printer interrupt
priority 2

l

Y

Disk interrupt
priority 4 held pending

Y

RS232 ISR finishes
disk interrupt occurs

Y

Disk ISR finishes

Printer ISR finishes

Stack

(l) 110 115 210 215 315 410
v i v i \ i ¥ i v E ¥ Time —
User :Printer: RS232 ! Disk :Printer: Use
program 1 ISR ISR i ISR 1 ISR 1+ program
L | .
[User| |User User [User|
Printer Printer

Time sequence of multiple interrupt example.

54

Towers of Hanoi in Core i7 Assembly
Language

.586 ; compile for Pentium (as opposed to 8088 etc.)
.MODEL FLAT
PUBLIC _towers ; export 'towers’
EXTERN _printf:NEAR ; import printf
.CODE
_towers: PUSH EBP ; save EBP (frame pointer) and decrement ESP
MOV EBP, ESP ; set new frame pointer above ESP
CMP [EBP+8], 1 ;if(n==1)
JNE L1 ; branch if n is not 1
MOV EAX, [EBP+16] ;printf(" .. 0L));
PUSH EAX ; hote that parameters i, j and the format
MOV EAX, [EBP+12] ; string are pushed onto the stack
PUSH EAX ; in reverse order. This is the C calling convention
PUSH OFFSET FLAT:format ; offset flat means the address of format
CALL _printf ; call printf
ADD ESP, 12 ; remove params from the stack
JMP Done ; we are finished

Towers of Hanoi for Core i/

55

Towers of Hanoi in Core i7 Assembly
Language

L1: MOV EAX, 6 ;statk=6-i—j
SUB EAX, [EBP+12] tEAX =6 -
SUB EAX, [EBP+16] EAX=6-i-j
MOV [EBP+20], EAX ; kK =EAX
PUSH EAX ; start towers(n — 1, i, k)
MOV EAX, [EBP+12] s EAX =i
PUSH EAX ;pushi
MOV EAX, [EBP+8] EAX =n
DEC EAX ;EAX=n-1
PUSH EAX ;pushn -1
CALL _towers ;call towers(n — 1,1, 6 —1—})
ADD ESP, 12 ; remove params from the stack
MOV EAX, [EBP+16] ; start towers(1, i, j)
PUSH EAX ;push j
MOV EAX, [EBP+12] ; EAX =1
PUSH EAX ;pushi
PUSH 1 ; push 1
CALL _towers ; call towers(1, 1, J)

Towers of Hanoi for Core i/

Towers of Hanoi in Core i7 Assembly

Language

Done:

.DATA
format
END

ADD ESP, 12

MOV EAX, [EBP+12]
PUSH EAX

MOV EAX, [EBP+20]
PUSH EAX

MOV EAX, [EBP+8]
DEC EAX

PUSH EAX

CALL _towers

ADD ESP, 12
LEAVE

RET O

; remove params from the stack
; start towers(n - 1,6 —i—j, 1)
; push i

; EAX =Kk

; push k

;EAX =n

; EAX = n-1

; pushn -1

; call towers(n — 1,6 -1 -], 1)
; adjust stack pointer

; prepare to exit

; return to the caller

DB "Move disk from %d to %d\n" ; format string

Towers of Hanoi for Core i/

57

