Systems Research Overview

Francesco Bronzino
ArchiSys L3

I B

' IS B I
I

ENS DE LYON

Program of the day

* Systems research
« Where to find it
« What are the hot topics
« Overview of recent work

Where to find it

e First rule of the game: most Computer Science lives and die its
Dy conferences

 Pure systems conferences:
» Usenix OSDI, ACM SOSP &
» Usenix ATC, Eurosys, Usenix FAST

At the intersection of systems and ...

« Networking: Usenix NSDI, ACM SIGCOMM, ACM CoNEXT
« Performance evaluation: ACM Sigmetrics

 Security: Usenix Security, ACM CCS

« Machine Learning: MLSys

When in doubt

CSRankings: Computer Science Rankings

CSRankings is a metrics-based ranking of top computer science institutions around the world. Click on a triangle (») to expand areas or institutions. Click on a name to go to a
faculty member's home page. Click on a chart icon (the |jl; after a name or institution) to see the distribution of their publication areas as a bar chart @ . Click on a Google
Scholar icon (i) to see publications, and click on the DBLP logo (») to go to a DBLP entry. Applying to grad school? Read this first. Do you find CSrankings useful? Sponsor
CSrankings on GitHub.

Rank institutions in = France @ by publications from 2013 @ to 2023 @

All Areas [off on] # Institution Count Faculty
1 » CRIStALL1 il 21 45

Al [off | on]

o 2 » Ecole Normale Superieure [1 | 2.0 27

» Artificial intelligence

» Computer vision 3 » Ecole Normale Superieure de Lyon [1 |l 1.7 30

» Machine learning 4 » EURECOMIL1 il 1.3 12

» Natural language processing . o

» The Web & information retrieval 4 P Universite Jean Monnet I iy 13 :
4 » Université Paris Dauphine L1 il 1.3 11

Systems [off | on] 7 » Ecole Normale Superieure de Cachanf @y 1.2 14

» Computer architecture 8 P Ecole Normale Superieure de Rennes L1y 1.1 2

» Computer networks

» Computer security

» Databases

» Design automation

» Embedded & real-time systems
» High-performance computing
» Mobile computing

» Measurement & perf. analysis
» Operating systems

» Programming languages

» Software engineering

Broader “systems” domain

NN E<E< <N

USENIX Symposium on Operating Systems
Design and Implementation 2022 Sessions

e Distributed Storage and Far < Formal Verification
Vemory » Machine Learning 2
* BUgS » Isolation and OS Services
* Persistent Memory » Security and Private
* Machine Learning 1 Messaging
 Potpourri « Managed Languages
e Storage « Recommenders and Pattern
Mining

Some considerations on systems research

* Driven by real world problems

« Modeling / theory helps, but requires understing how systems
WOork

« Most often requires a real implementation
 Simulation at the very mininum

 Ultimately, it can be painful...

« Not a lot of systems research in France ®
2 articlesin 2022
« Not better if we include networked systems into the picture

Specialized kernels

The Demikernel Datapath OS Architecture for
Microsecond-scale Datacenter Systems

Irene Zhang, Amanda Raybuck*, Pratyush Patel*, Kirk Olynyk®, Jacob Nelson®,
Omar S. Navarro Leija*, Ashlie Martinez*, Jing Liu*, Anna Kornfeld Simpson*, Sujay Jayakar®,

Pedro Henrique Penna¥, Max Demoulin*, Piali Choudhury®, Anirudh Badam®
YMicrosoft Research, *University of Texas at Austin, *University of Washington,
*University of Wisconsin Madison, *University of Pennsylvania, °Zerowatt, Inc.

Abstract

Datacenter systems and I/O devices now run at single-digit
microsecond latencies, requiring ns-scale operating systems.
Traditional kernel-based operating systems impose an unaf-
fordable overhead, so recent kernel-bypass OSes [73] and
libraries [23] eliminate the OS kernel from the I/O datapath.
However, none of these systems offer a general-purpose data-
path OS replacement that meet the needs of ps-scale systems.

This paper proposes Demikernel, a flexible datapath OS
and architecture designed for heterogenous kernel-bypass de-
vices and ps-scale datacenter systems. We build two prototype
Demikernel OSes and show that minimal effort is needed to
port existing ps-scale systems. Once ported, Demikernel lets
applications run across heterogenous kernel-bypass devices
with ns-scale overheads and no code changes.

CCS Concepts * Software and its engineering — Operat-
ing systems.

like Redis [80], can achieve single-digit microsecond laten-
cies. To avoid becoming a bottleneck, datapath systems soft-
ware must operate at sub-microsecond — or nanosecond — la-
tencies. To minimize latency, widely deployed kernel-bypass
devices [78, 16] move legacy OS kernels to the control path
and let ps-scale applications directly perform datapath I/O.

Kernel-bypass devices fundamentally change the tradi-
tional OS architecture: they eliminate the OS kernel from
the I/O datapath without a clear replacement. Kernel-bypass
devices offload OS protection (e.g., isolation, address transla-
tion) to safely offer user-level I/O and more capable devices
implement some OS management (e.g., networking) to fur-
ther reduce CPU usage. Existing kernel-bypass libraries [57,
23, 44] supply some missing OS components; however, none
are a general-purpose, portable datapath OS.

Without a standard datapath architecture and general-purpose
datapath OS, kernel-bypass is difficult for ps-scale applica-
tions to leverage. Programmers do not want to re-architect

Modern I/O requires bypassing the kernel

Kernel-Bypass Architectures Demikernel
Control Control
Path Ad-hoc Datapaths Path Datapath
App App
' App libSPDK
User-space ' jArrakis, oo App HhBRMA
Software ' library eRPC Lib. libDPDK

Kernel-space OS

Software -
. Buf. Mgmt
v] User I/O User I/O
I/O Hardware V{1801 W»lxin] ¢

Buf. Mgmt) «
User I/O

NIC - DPDK

Figure 1. Example kernel-bypass architectures. Unlike the Demik-
ernel architecture (right), Arrakis [73], Caladan [23] and eRPC [8]’s
architectures do not flexibly support heterogenous devices.

Requirements

1. Support Heterogenous OS Offloads
2. Coordinate Zero-Copy Memory Access
3. Multiplex and Schedule the CPU at ys-scale

No added programming complexity

Table 3. LoC for us-scale kernel-bypass systems. POSIX and Demik-
ernel versions of each application. The UDP relay also supports
10_uring (1782 Loc), and TxnStore has a custom RDMA RPC li-
brary (12970 LoC).

OS/API Echo Server UDP Relay Redis TxnStore

POSIX 328 1731 52954 13430
Demikernel 291 2076 54332 12610

10

Performance

& 32
=) Demikernel
2 24 B Everything else
& 16
3
8
S
< 9
o \ ot \ \¥ eC O 32" aaW N
L IOY oW St an 3 CANCIPMR V(e Co <3 2
Gt ce 0\00?\ 0609\ e gne c2 ook :0\""‘

Figure 5. Echo latencies on Linux (64B). The upper number reports
total time spent in Demikernel for 4 I/O operations: client and server
send and receive; the lower ones show network and other latency;
their sum is the total RTT on Demikernel. Demikernel achieves
ns-scale overheads per I/O and has latencies close to those of eRPC,
Shenango and Caladan, while supporting a greater range of devices
and network protocols. We perform 1 million echos over 5 runs, the
variance between runs was below 1%.

11

Performance 2

In-memory Persistent Log
300K
8 W GET
» 250K SET
[2]
& 200K
£ 150K
Q
O 100K
©
o
0K
w3 ; O Q N R
oF R & IR @ & 3
& QN N\ V 2 & @2 € P
WV o 0’8&\ C)rb' O'boq,‘& OQOQ'(S"
+ +

Figure 11. Redis benchmark throughput in-memory and on-disk. We
use 64B values and 1 million keys. We perform separate runs for
each operation with 500,000 accesses repeated 5 times. Demikernel
improves Redis performance and lets it maintain that performance
with synchronous writes to disk.

12

Storage design

Modernizing File System through In-Storage Indexing

Jinhyung Koo Junsu Im Jooyoung Song Juhyung Park Eunji Lee
DGIST DGIST DGIST DGIST Soongsil University
Bryan S. Kim Sungjin Lee

Syracuse University

Abstract

We argue that a key-value interface between a file system and
an SSD is superior to the legacy block interface by presenting
KEVIN. KEVIN combines a fast, lightweight, and POSIX-
compliant file system with a key-value storage device that
performs in-storage indexing. We implement a variant of a
log-structured merge tree in the storage device that not only in-
dexes file objects, but also supports transactions and manages
physical storage space. As a result, the design of a file system
with respect to space management and crash consistency is
simplified, requiring only 10.8K LOC for full functionality.
We demonstrate that KEVIN reduces the amount of I/O traf-
fic between the host and the device, and remains particularly
robust as the system ages and the data become fragmented.
Our approach outperforms existing file systems on a block
SSD by a wide margin — 6.2X on average — for metadata-
intensive benchmarks. For realistic workloads, KEVIN im-
proves throughput by 68% on average.

DGIST

—— Rand-R/W (50:50) 540 Rand-R/W —--
25 [Varmal 2 Others
o rmdi 3 e SR Wy e
5 20 |0 L';"e;: not scalable g510
Bis| 2 9
© e}
E 10 s 60
5 £ 30
! b)
5 —g——4
T M S %, 9y A 41, Ve, %605, %600, 00
44444(,; & "1 PR, Py e M58 v 0 R0 %
(a) EXT4 performance (b) Number of outstanding requests

Figure 1: The performance of the EXT4 file system with
respect to SSD performance. With the current block interface,
the file system exhibits poor performance scalability under
metadata and fsync intensive workloads.

tems have to perform extra operations on on-disk metadata.
This not only involves many extra I/Os and data transfers over
the host interface, but also causes serious delays owing to I/O
ordering [6,7,52] and journaling [26,32]. The end of Moore’s
Law [50] means that the performance of file systems can no

13

The metadata overhead

-4~ Rand-R/W (50:50) 2540 L Rand-R/'W —4-
25 |- Varmail A 2 Others HH
8 -~ rmdir }notscalable 8-510 B M
O 20 [-g- creat [
g1 2o
£ 2
“ 5 2 30 -
0 e o 4, N %n. 965 90 R
2y, Wy %0 %60, 7 P Ay, Ve, %00, %6 %
4 50, % O, 600,270,
'”/1403762 OSVO 0'°"?o 0'°"?o/%‘93 %40?62 51/0 10,90 '%O s
(a) EXT4 performance (b) Number of outstanding requests

Figure 1: The performance of the EXT4 file system with
respect to SSD performance. With the current block interface,
the file system exhibits poor performance scalability under
metadata and fsync intensive workloads.

14

Key value storage

[FS Application] [FS Application]
POSIX Interface POSIX Interface
| Virtual File System | | Virtual File System |
7)) : W "
. Inode | Dir. . Inode | Dir. !Journal
P | |Bitmap pointer |entries|Journal R | |Bitmap pointer |entries | Mgmt.
READ Block I/O Interface Ext.
TRIM Interface
a L2P Indexing all Exti2p || Joumal |
% A
NAND Flash NAND Flash

(a) Traditional Block Indexing

(b) Extended Block Indexing

DevFS

FS Application

FSLib

open ()
read ()

write () POSIX-like

Interface

Embedded File System

NAND Flash

(c) File Indexing

KV-SSD

(d) Key-value Indexing

Figure 2: Categories of in-storage indexing technologies

|

NAND Flash)

[KV Applications [FS Application]
KVLib I POSIX Interface
I wll Virtual File System |
SET () k File 0 Object | [VFS to KV
- = apping ranslation
ITERATE () KV Interface ; :
: || Transaction Mgmt. |
[Ext. KV Interface
KV Indexing a(KV Indexing [File & Dir | |
O @ 72 @) @ Indexing
7]
Z Transaction
> Support
<

(e) Proposed KEVIN

15

EXT4, XFS, BTRFS, F2FS, and KEVIN are
Pe rfO rmance abbreviated as 'E', ‘X, ‘B, 'F. and 'K, respectively.

_. 450
£ BmE OX 0B BF mK
2 360
2
= 270
3
P J I I
g | L Ul
@]
mkdir rmdir creat unlink readdir-1st readdir-2nd
(a) Throughput
g 123 m Data Read mData Write m Metadata Read ®m Metadata Write @ Journaling 1/O
% 90
= 60
Y 30
0
EXBFKEXBFK|EXBFK|EXBFKIEXBFKIEXBFK
mkdir rmdir creat unlink readdir-1st | readdir-1st
(b) File system traffic

Figure 9: Metadata intensive workloads

16

Specialized hardware

LineFS: Efficient SmartNIC Offload of a Distributed
File System with Pipeline Parallelism

Jongyul Kim Insu Jang*
KAIST University of Michigan

Jaeseong Im

Marco Canini

Waleed Reda
KTH Royal Institute of Technology
Université catholique de Louvain

Dejan Kosti¢

KAIST KAUST KTH Royal Institute of Technology
Youngjin Kwon Simon Peter Emmett Witchel
KAIST The University of Texas at Austin ~ The University of Texas at Austin
Katana Graph
ABSTRACT CCS CONCEPTS

In multi-tenant systems, the CPU overhead of distributed
file systems (DFSes) is increasingly a burden to application
performance. CPU and memory interference cause degraded
and unstable application and storage performance, in par-
ticular for operation latency. Recent client-local DFSes for
persistent memory (PM) accelerate this trend. DFS offload
to SmartNICs is a promising solution to these problems, but
it is challenging to fit the complex demands of a DFS onto
simple SmartNIC processors located across PCle.

We present LineFS, a SmartNIC-offloaded, high-perfor-
mance DFS with support for client-local PM. To fully leverage
the SmartNIC architecture, we decompose DFS operations
into execution stages that can be offloaded to a varallel data-

« Information systems — Distributed storage; Storage
class memory; « Social and professional topics — File sys-
tems management; - Networks — Network adapters; «
Computer systems organization — System on a chip;
Availability.

KEYWORDS
Distributed file system, SmartNIC offload

ACM Reference Format:

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kosti¢, Youngjin Kwon, Simon Peter, and Emmett Witchel.
2021. LineFS: Efficient SmartNIC Offload of a Distributed File Sys-

17

DES uses precious CPU resources

¥ of Throughput (GB/s) CPU utilization
proc. 25GbE 100GbE 25GbE 100GbE
Assise Ceph | Assise Ceph | Assise Ceph | Assise Ceph
1 0.38 1.23 0.63 1.26 62% 95% | 101% 96%
2 0.74 1.34 1.12 1.51 | 119% 126% | 201% 146%
4 1.30 1.40 1.98 1.56 | 225% 141% | 380% 211%
8 1.32 1.41 2.22 1.60 | 224% 176% | 509% 211%

Table 1: CPU utilization of Assise and Ceph for dif-
ferent numbers of benchmark processes and network
speeds. 100% = 1 core.

Exploit tasks parallelisms

Chk: chunk

@ Fetching chi1 | Chka [Chk3 T

9 Validation Chk1 [— Chk2 [—| Chk3 _ —s=ic >
: «—>walits for ordering

9 Publication = Chk1 Chk2 Chk3 |[—>»

0 ACK SmartNIC to Host Chk1 e >

Figure 2: Publishing with pipeline parallelism.

19

Performance

Bl Assise BNl Assise-BgRep| Hll Assise+Hyperloop
LineFS-NotParallel K1 LineFS
Replicas idle Replicas busy

m _
5 2.0

O
- 1.5
>
£1.0
S

© 0.5;

i -
= 0.0

N

1 2 4 8 1 2 4 8
Number of LibFS processes

Figure 4: Write throughput scalability when replicas
are idle and busy.

20

Performance 2

B Streamcluster execution time (primary) —+— Throughput

IR Streamcluster execution time (replica) _
1,800 v

‘;n'; 40 a)
£ 1,600 =
= 5
S 20 1,400 &
B o
0 1,200 3
o 0 , _ : 11,000
Streamcluster Solo run Assise Assise-BgRepl LineFS

Figure 6: Performance impact of LineFS and Assise
co-execution on streamcluster execution time (left Y-
axis) and DFS throughput (right Y-axis).

21

Network systems / Machine Learning

Traffic Refinery: Cost-Aware Data Representation for
Machine Learning on Network Traffic

FRANCESCO BRONZINO?, LISTIC, Université Savoie Mont Blanc, France
PAUL SCHMITT", USC Information Sciences Institute, USA

SARA AYOUBI, Nokia Bell Labs, France

HYOJOON KIM, Princeton University, USA

RENATA TEIXEIRA, Inria, France

NICK FEAMSTER, University of Chicago, USA

Network management often relies on machine learning to make predictions about performance and security
from network traffic. Often, the representation of the traffic is as important as the choice of the model. The
features that the model relies on, and the representation of those features, ultimately determine model accuracy,
as well as where and whether the model can be deployed in practice. Thus, the design and evaluation of these
models ultimately requires understanding not only model accuracy but also the systems costs associated with
deploying the model in an operational network. Towards this goal, this paper develops a new framework and
system that enables a joint evaluation of both the conventional notions of machine learning performance
(e.g., model accuracy) and the systems-level costs of different representations of network traffic. We highlight
these two dimensions for two practical network management tasks, video streaming quality inference and
malware detection, to demonstrate the importance of exploring different representations to find the appropriate
operating point. We demonstrate the benefit of exploring a range of representations of network traffic and
present Traffic Refinery, a proof-of-concept implementation that both monitors network traffic at 10 Gbps
and transforms traffic in real time to produce a variety of feature representations for machine learning. Traffic
Refinery both highlights this design space and makes it possible to explore different representations for
learning, balancing systems costs related to feature extraction and model training against model accuracy.

CCS Concepts: « Networks — Network measurement; Network management; - Computing method-
ologies — Machine learning.

22

A video quality inference use case

Data Collection /
Cleaning

NETFLIX

From “Inferring Streaming Video Quality from Encrypted Traffic: Practical Models

Feature Engineering

Network layer (Net)
Throughput

Pkt counts

Transport layer (Tran)

Flags

Feature Training /
Testing

Resolution

Retransmissions

\ 4

Precision
o
[6,]

Application layer (App)

Segment sizes

Segment inter-arrivals

v

L
o

—e— Net P/R curve (AP = 0.88)
1 —+— Net+Tran P/R curve (AP = 0.90)
—»— Net+App P/R curve (AP = 0.96)

—— Al P/R curve (AP = 0.96)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Recall

23

and Deployment Experience”, F. Bronzino et al., in ACM Sigmetrics 2020

Representations impact more than just

accuracy

Accuracy

©

~

Ul
I

o

o0

o
|

A ’v\

Best accuracy,
but what
about cost?

10*

10° 10°
State (memory in B)

24

Security

BlackBox: A Container Security Monitor for
Protecting Containers on Untrusted Operating Systems

Alexander Van’t Hof
Columbia University

Abstract

Containers are widely deployed to package, isolate, and
multiplex applications on shared computing infrastructure,
but rely on the operating system to enforce their security
guarantees. This poses a significant security risk as large

operating system codebases contain many vulnerabilities.

We have created BlackBox, a new container architecture
that provides fine-grain protection of application data
confidentiality and integrity without trusting the operating
system. BlackBox introduces a container security monitor, a
small trusted computing base that creates protected physical
address spaces (PPASes) for each container such that there is
no direct information flow from container to operating system
or other container PPASes. Indirect information flow can only
happen through the monitor, which only copies data between
container PPASes and the operating system as system call
arguments, encrypting data as needed to protect interprocess

Jason Nieh
Columbia University

Popular container mechanisms such as Linux containers
rely on a commodity operating system (OS) to enforce their
security guarantees. However, commodity OSes such as
Linux are huge, complex, and imperfect pieces of software.
Attackers that successfully exploit OS vulnerabilities may
gain unfettered access to container data, compromising the
confidentiality and integrity of containers—an undesirable
outcome for both computing service providers and their users.

Modern systems incorporate hardware security mecha-
nisms to protect applications from an untrusted OS, such
as Intel Software Guard Extensions (SGX) [30] and Arm
TrustZone [2], but they require rewriting applications and may
impose high overhead to use OS services. Some approaches
have built on these mechanisms to protect unmodified
applications [7] or containers [3]. Unfortunately, they suffer
from high overhead, incomplete and limited functionality,
and massively increase the trusted computing base (TCB)

thranoh a lihrarv NQ Ar rintimeae cuctem nntentiallyv tradina

25

Network stack

The nanoPU: A Nanosecond Network Stack for Datacenters

Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen,
Muhammad Shahbaz*, Changhoon Kim, and Nick McKeown
Stanford University *Purdue University

Abstract

We present the nanoPU, a new NIC-CPU co-design to
accelerate an increasingly pervasive class of datacenter appli-
cations: those that utilize many small Remote Procedure Calls
(RPCs) with very short (us-scale) processing times. The novel
aspect of the nanoPU is the design of a fast path between the
network and applications—bypassing the cache and memory
hierarchy, and placing arriving messages directly into the CPU
register file. This fast path contains programmable hardware
support for low latency transport and congestion control as
well as hardware support for efficient load balancing of RPCs
to cores. A hardware-accelerated thread scheduler makes sub-
nanosecond decisions, leading to high CPU utilization and
low tail response time for RPCs.

We built an FPGA prototype of the nanoPU fast path by
modifying an open-source RISC-V CPU, and evaluated its per-
formance using cycle-accurate simulations on AWS FPGAs.
The wire-to-wire RPC response time through the nanoPU
is just 69ns, an order of magnitude quicker than the best-of-
breed, low latency, commercial NICs. We demonstrate that
the hardware thread scheduler is able to lower RPC tail re-
sponse time by about 5x while enabling the system to sustain
20% higher load, relative to traditional thread scheduling tech-
niques. We implement and evaluate a suite of applications,

from when a client issues an RPC request until it receives a
response) for applications invoking many sequential RPCs;
(2) the tail response time (i.e., the longest or 99th %ile RPC
response time) for applications with large fanouts (e.g., map-
reduce jobs), because they must wait for all RPCs to complete
before continuing [17]; and (3) the communication overhead
(i.e., the communication-to-computation ratio). When com-
munication overhead is high, it may not be worth farming out
the request to a remote CPU at all [57]. We will sometimes
need more specific metrics for portions of the processing
pipeline, such as the median wire-to-wire latency, the time
from when the first bit of an RPC request arrives at the server
NIC until the last bit of the response departs.

Many authors have proposed exciting ways to accelerate
RPCs by reducing the message processing overhead. These
include specialized networking stacks, both in software (e.g.,
DPDK [18], ZygOS [51], Shinjuku [27], and Shenango [49]),
and hardware (e.g., RSS [43], RDMA [9], Tonic [2], NeB-
uLa [57], and Optimus Prime [50]). Each proposal tackles
one or more components of the RPC stack (i.e., network trans-
port, congestion control, core selection, thread scheduling, and
data marshalling). For example, DPDK removes the memory
copying and network transport overhead of an OS and lets a
developer handle them manually in user space. ZygOS imple-

26

Storage design 2

Rearchitecting Linux Storage Stack for us Latency and High Throughput

Jaehyun Hwang Midhul Vuppalapati
Cornell University Cornell University
Abstract

This paper demonstrates that it is possible to achieve us-scale
latency using Linux kernel storage stack, even when tens of
latency-sensitive applications compete for host resources with
throughput-bound applications that perform read/write opera-
tions at throughput close to hardware capacity. Furthermore,
such performance can be achieved without any modification
in applications, network hardware, kernel CPU schedulers
and/or kernel network stack.

We demonstrate the above using design, implementation
and evaluation of blk-switch, a new Linux kernel storage
stack architecture. The key insight in blk-switch is that
Linux’s multi-queue storage design, along with multi-queue
network and storage hardware, makes the storage stack con-
ceptually similar to a network switch. blk-switch uses this
insight to adapt techniques from the computer networking
literature (e.g., multiple egress queues, prioritized processing
of individual requests, load balancing, and switch scheduling)
to the Linux kernel storage stack.

Simon Peter Rachit Agarwal
UT Austin Cornell University

(L-epp)(Tape] (L-app](T-ape]

User space

Kernel space

blk-switch

HW SSD NIC

Figure 1: The key insight in blk-switch design: Linux’s per-
core block layer design, along with modern multi-queue storage
and network hardware, makes the storage stack conceptually
similar to a network switch.

broad belief that, despite Linux’s great success, it has emerged
as the core bottleneck for modern applications and hardware.

This paper focuses on storage stacks used by applications
to access data on local and/or remote servers. We show that it

27

Storage design 3

XRP: In-Kernel Storage Functions with eBPF

Yuhong Zhongl, Haoyu Lil, Yu Jian Wu!, Toannis Zarkadas!, J effrey Tao!, Evan Mesterhazyl,
Michael Makris!, Junfeng Yang!, Amy Tai?, Ryan Stutsman>, and Asaf Cidon'

IColumbia University, 2Google, 3University of Utah

Abstract

With the emergence of microsecond-scale NVMe storage
devices, the Linux kernel storage stack overhead has become
significant, almost doubling access times. We present XRP,
a framework that allows applications to execute user-defined
storage functions, such as index lookups or aggregations, from
an eBPF hook in the NVMe driver, safely bypassing most
of the kernel’s storage stack. To preserve file system seman-
tics, XRP propagates a small amount of kernel state to its
NVMe driver hook where the user-registered eBPF functions
are called. We show how two key-value stores, BPF-KYV, a
simple B*-tree key-value store, and WiredTiger, a popular
log-structured merge tree storage engine, can leverage XRP
to significantly improve throughput and latency.

1 Introduction

With the rise of new high performance memory technologies,
such as 3D XPoint and low latency NAND, new NVMe stor-

In contrast to these approaches, we seek a readily-
deployable mechanism that can provide fast access to emerg-
ing fast storage devices that requires no specialized hardware
and no significant changes to the application while working
with existing kernels and file systems. To this end, we rely on
BPF (Berkeley Packet Filter [67, 68]) which lets applications
offload simple functions to the Linux kernel [8]. Similar to
kernel bypass, by embedding application-logic deep in the
kernel stack, BPF can eliminate overheads associated with
kernel-user crossings and the associated context switches. Un-
like kernel bypass, BPF is an OS-supported mechanism that
ensures isolation, does not lead to low utilization due to busy-
waiting, and allows a large number of threads or processes to
share the same core, leading to better overall utilization.

The support of BPF in the Linux kernel makes it an attrac-
tive interface for allowing applications to speed up storage
I/0. However, using BPF to speed up storage introduces sev-
eral unique challenges. Unlike existing packet filtering and

28

Machine learning training

Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning

Aurick Qiao!»? Sang Keun Choe? Suhas Jayaram Subramanya? Willie Neiswanger!-?
Qirong Ho! Hao Zhang!? Gregory R. Ganger? Eric P. Xing*1-?

! Petuum, Inc. 2Carnegie Mellon University 3UC Berkeley *MBZUAI

Abstract

Pollux improves scheduling performance in deep learning
(DL) clusters by adaptively co-optimizing inter-dependent
factors both at the per-job level and at the cluster-wide level.
Most existing schedulers expect users to specify the number of
resources for each job, often leading to inefficient resource use.
Some recent schedulers choose job resources for users, but do
so without awareness of how DL training can be re-optimized
to better utilize the provided resources.

Pollux simultaneously considers both aspects. By moni-
toring the status of each job during training, Pollux models
how their goodput (a metric we introduce to combine system
throughput with statistical efficiency) would change by adding
or removing resources. Pollux dynamically (re-)assigns
resources to improve cluster-wide goodput, while respecting
fairness and continually optimizing each DL job to better
utilize those resources.

In experiments with real DL jobs and with trace-driven
simulations. Pollux reduces average iob completion times

Existing schedulers require users to manually configure
their jobs, which if done improperly, can greatly degrade
training performance and resource efficiency. For example,
allocating too many GPUs may result in long queuing times
and inefficient resource usage, while allocating too few GPUs
may result in long runtimes and unused resources. Such
decisions are especially difficult to make in a shared-cluster
setting, since optimal choices are dynamic and depend on the
cluster load while a job is running.

Even though recent elastic schedulers can automatically
select an appropriate amount of resources for each job, they do
so blindly to inter-dependent training-related configurations
that are just as important. For example, the batch size and
learning rate of a DL job influence the amount of computation
needed to train its model. Their optimal choices vary between
different DL tasks and model architectures, and they have
strong dependence on the job’s allocation of resources.

The amount of resources, batch size, and learning rate are
diffienlt to confionre annronriatelv withont exnert knowledoe

29

RAM / Flash interactions

Kangaroo: Caching Billions of Tiny Objects on Flash

Sara McAllister®, Benjamin Berg®, Julian Tutuncu-Macias®, Juncheng Yang"

Sathya Gunasekar$, Jimmy Lué, DanielS. Berger*, Nathan Beckmann®, Gregory R. Ganger*
*Carnegie Mellon University $Facebook TMicrosoft Research/University of Washington

Abstract

Many social-media and IoT services have very large work-
ing sets consisting of billions of tiny (=100 B) objects. Large,
flash-based caches are important to serving these working
sets at acceptable monetary cost. However, caching tiny
objects on flash is challenging for two reasons: (i) SSDs
can read/write data only in multi-KB “pages” that are much
larger than a single object, stressing the limited number of
times flash can be written; and (ii) very few bits per cached
object can be kept in DRAM without losing flash’s cost advan-
tage. Unfortunately, existing flash-cache designs fall short of
addressing these challenges: write-optimized designs require
too much DRAM, and DRAM-optimized designs require too
many flash writes.

We present KANGAROO, a new flash-cache design that opti-
mizes both DRAM usage and flash writes to maximize cache
performance while minimizing cost. Kangaroo combines
a large, set-associative cache with a small, log-structured
cache. The set-associative cache requires minimal DRAM,
while the log-structured cache minimizes Kangaroo’s flash
writes. Experiments using traces from Facebook and Twitter
show that Kangaroo achieves DRAM usage close to the best
prior DRAM-optimized design, flash writes close to the best

1%5&2‘ Log Structured (LS)
KLog }a- KSet P
Kangaroo 0.0 0.1 0.2 0.3 0.4
£ Miss Ratio
(a) Overview. (b) Kangaroo reduces misses by 29%.

Fig. 1. (a) High-level illustration of Kangaroo’s design. (b) Miss
ratio achieved on a production trace from Facebook by different
flash-cache designs on a 1.9 TB drive with a budget of 16 GB DRAM
and three device-writes per day. Prior designs are constrained by
either DRAM or flash writes, whereas Kangaroo’s design balances
these constraints to reduce misses by 29%.

25, 71], microblogging services like Twitter [74, 75], ecom-
merce [18], and emerging sensing applications in the Internet
of Things [38, 48, 49]. Given the societal importance of such
applications, there is a strong need to cache tiny objects at
high performance and low cost (i.e., capital and operational
expense).

Among existing memory and storage technologies with ac-

ceptable performance, flash is by far the most cost-effective.
MDAM nen A cnnan cerlatlla e ncn Al an INTUINAA Lancen Aeran Mans

30

Concurrency bugs

SNOWBOARD: Finding Kernel Concurrency Bugs
through Systematic Inter-thread Communication
Analysis

Sishuai Gong
Purdue University
USA

Pedro Fonseca
Purdue University
USA

Abstract

Kernel concurrency bugs are challenging to find because
they depend on very specific thread interleavings and test in-
puts. While separately exploring kernel thread interleavings
or test inputs has been closely examined, jointly exploring
interleavings and test inputs has received little attention, in
part due to the resulting vast search space. Using precious,
limited testing resources to explore this search space and
execute just the right concurrent tests in the proper order is
critical.

This paper proposes SNOWBOARD a testing framework
that generates and executes concurrent tests by intelligently
exploring thread interleavings and test inputs jointly. The
design of SNOWBOARD is based on a concept called poten-
tial memory communication (PMC), a guess about pairs of

Deniz Altinbiiken
Google Research
USA

Petros Maniatis
Google Research
USA

SNOWBOARD discovered 14 new concurrency bugs in Linux
kernels 5.3.10 and 5.12-rc3, of which 12 have been confirmed
by developers. Six of these bugs cause kernel panics and

filesystem errors, and at least two have existed in the kernel
for many years, showing that this approach can uncover
hard-to-find, critical bugs. Furthermore, we show that cover-
ing as many distinct pairs of uncommon read/write instruc-
tions as possible is the test-prioritization strategy with the
highest bug yield for a given test-time budget.

CCS Concepts: « Security and privacy — Operating sys-
tems security; - Software and its engineering — Con-
currency control; Software testing and debugging.

Keywords: Kernel concurrency bug, Operating systems se-
curity, Software testing and debugging, Concurrency pro-

oramminag

31

