Compare commits

...

3 Commits

Author SHA1 Message Date
df2ed3acda TP2: copy of TP1 2024-04-19 08:12:31 +02:00
b74b678386 Update TP1 2024-04-19 08:11:41 +02:00
973b6eacd6 Add TD 8 & 9 2024-04-19 08:11:16 +02:00
19 changed files with 1171 additions and 4 deletions

84
TD/TD8/exercise1a.c Normal file
View File

@ -0,0 +1,84 @@
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define N 20
#define PROD 5
#define CONS 5
#define PROD_MAX 500
int shared_buffer[N];
void* producteur(void* args) {
int j, product = 0;
int count = 0;
while (1) {
int i = -1;
while (++i < N) {
if (shared_buffer[i] == -1) {
break;
}
}
if (i >= N) {
sleep(0.05);
continue;
}
product = (rand()%500+product)%20000;
j = (i+j)%20000;
shared_buffer[i] = product;
count++;
if (!(count % 5000))
printf("produit: %d %d\n", j, product);
sleep(0.05);
}
return NULL;
}
void* consommateur(void* args) {
int j, product = 0;
int count = 0;
while (1) {
int i = -1;
while (++i < N) {
if (shared_buffer[i] != -1) {
break;
}
}
if (i >= N) {
sleep(0.05);
continue;
}
product = (shared_buffer[i]+product)%20000;
j = (i+j)%20000;
shared_buffer[i] = -1;
count++;
if (!(count %5000))
printf("résultat: %d %d %d\n", j, product);
sleep(0.05);
}
return NULL;
}
int main() {
for (int i=0; i < N; i++) {
shared_buffer[i] = -1;
}
pthread_t tid[PROD+CONS];
for (int i=0; i < PROD; i++) {
pthread_create(&(tid[i]), NULL, &producteur, NULL);
}
for (int i=0; i < CONS; i++) {
pthread_create(&(tid[i+PROD]), NULL, &consommateur, NULL);
}
for (int i=0; i < PROD+CONS; i++) {
pthread_join(tid[i], NULL);
}
return 0;
}

120
TD/TD8/exercise1b.c Normal file
View File

@ -0,0 +1,120 @@
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <semaphore.h>
#define N 10
#define PROD 5
#define CONS 3
#define PROD_MAX 500
#define DELAY 1
#define RED "\033[31m"
#define RESET "\033[0m"
sem_t sem_prod;
sem_t sem_cons;
sem_t sem_renderer;
int shared_buffer[N];
pthread_mutex_t lock;
void* producteur(void* args) {
while (1) {
sem_wait(&sem_prod);
pthread_mutex_lock(&lock);
int i = -1;
while (++i < N) {
if (shared_buffer[i] == -1) {
shared_buffer[i] = rand()%PROD_MAX;
sem_post(&sem_cons);
sem_post(&sem_renderer);
//printf("placed@%d !\n", i);
break;
}
}
if (i >= N) {
fprintf(stderr, "Can't place my product !\n");
exit(1);
}
pthread_mutex_unlock(&lock);
sleep(DELAY);
}
return NULL;
}
void* consommateur(void* args) {
while (1) {
sem_wait(&sem_cons);
pthread_mutex_lock(&lock);
int i = -1;
while (++i < N) {
if (shared_buffer[i] != -1) {
shared_buffer[i] = -1;
//printf("got@%d !\n", i);
sem_post(&sem_prod);
sem_post(&sem_renderer);
break;
}
}
if (i >= N) {
fprintf(stderr, "Can't get a product !\n");
exit(1);
}
pthread_mutex_unlock(&lock);
sleep(DELAY);
}
return NULL;
}
void* renderer(void* args) {
while (1) {
sem_wait(&sem_renderer);
pthread_mutex_lock(&lock);
printf("\r");
for (int i=0; i < N; i++) {
if (shared_buffer[i] == -1) {
printf(RED "%3d " RESET, shared_buffer[i]);
} else {
printf("%3d ", shared_buffer[i]);
}
}
pthread_mutex_unlock(&lock);
}
}
int main() {
for (int i=0; i < N; i++) {
shared_buffer[i] = -1;
}
pthread_mutex_init(&lock, NULL);
pthread_t tid[PROD+CONS+1];
sem_init(&sem_prod, 0, N);
sem_init(&sem_cons, 0, 0);
sem_init(&sem_renderer, 0, 1);
for (int i=0; i < PROD; i++) {
pthread_create(&(tid[i]), NULL, &producteur, NULL);
}
for (int i=0; i < CONS; i++) {
pthread_create(&(tid[i+PROD]), NULL, &consommateur, NULL);
}
// Additional renderer thread to display the state of the market
pthread_create(&(tid[CONS+PROD]), NULL, &renderer, NULL);
for (int i=0; i < PROD+CONS+1; i++) {
pthread_join(tid[i], NULL);
}
sem_destroy(&sem_cons);
sem_destroy(&sem_prod);
return 0;
}

146
TD/TD8/exercise2.c Normal file
View File

@ -0,0 +1,146 @@
#include <sys/types.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
/*
Ordre des pipes:
AB 0
AC 1
AD 2
BI 3
CE 4
CF 5
DH 6
EG 7
FG 8
GI 9
HI 10
IA 11
*/
int main() {
int* fds[12];
for (int i=0; i < 12; i++) {
fds[i] = malloc(sizeof(int)*2);
pipe(fds[i]);
}
int i=0;
for (; i < 9; i++) {
if (fork()) { break; } // Generate 9 processes
if (i == 8) { return 0; }
}
int input[3] = {-1, -1, -1};
int output[3] = {-1, -1, -1};
char id = 'A'+i;
switch (id) {
case 'A': {// A
input[0] = 11;
output[0] = 0;
output[1] = 1;
output[2] = 2;
} break;
case 'B': {// B
input[0] = 0;
output[0] = 3;
} break;
case 'C': {// C
input[0] = 1;
output[0] = 4;
output[1] = 5;
} break;
case 'D': {// D
input[0] = 2;
output[0] = 6;
} break;
case 'E': {// E
input[0] = 4;
output[0] = 7;
} break;
case 'F': {// F
input[0] = 5;
output[0] = 8;
} break;
case 'G': {// G
input[0] = 7;
input[1] = 8;
output[0] = 9;
} break;
case 'H': {// H
input[0] = 6;
output[0] = 10;
} break;
case 'I': {// I
input[0] = 3;
input[1] = 9;
input[2] = 10;
output[0] = 11;
} break;
default:
return -1;
}
FILE* in_stream[3];
FILE* out_stream[3];
for (int j=0; j < 3; j++) {
if (input[j] != -1) {
in_stream[j] = fdopen(fds[input[j]][0], "r");
}
if (output[j] != -1) {
out_stream[j] = fdopen(fds[output[j]][1], "w");
}
}
printf("%c: got %d %d %d > %d %d %d\n", id, input[0], input[1], input[2], output[0], output[1], output[2]);
sleep(1);
if (id == 'I') {
int c;
while (1) { // Get things from stdin
c = getchar();
for (int j=0; j < 3; j++) {
if (output[j] != -1) {
fputc(c, out_stream[j]);
}
}
}
return 0;
}
while (1) {
printf("%c listening...\n", id);
int c, d;
d = -1;
for (int j=0; j < 3; j++) {
if (input[j] != -1) {
c = fgetc(in_stream[j]);
if (d != -1 && c != d) {
fprintf(stderr, "%c got two different chars: %c vs %c\n", id, c, d);
}
d = c;
}
}
printf("%c received %c\n", id, c);
for (int j=0; j < 3; j++) {
if (output[j] != -1) {
printf("%c transmits %c to %d\n", id, c, output[j]);
fputc(c, out_stream[j]);
}
}
}
for (int j=0; j < 3; j++) {
if (input[j] != -1) {
fclose(in_stream[j]);
}
if (output[j] != -1) {
fclose(out_stream[j]);
}
}
}

12
TD/TD8/index.md Normal file
View File

@ -0,0 +1,12 @@
# TD 8: Threads and synchronisation
## Reasoning operating systems: questions
1. Différent mécanismes pour différentes utilisations:
- mutex locks pour gérer l'accès à une ressource
- sémaphores pour gérer l'accès à une quantité de variables
- variables de condition
- spin lock: comme sémaphore mais avec du temps processus
2. Cela indique quelles fourchettes sont utilisées,
chaque philosophe n'utilisant que 2 fourchettes ou aucune à la fois
3. Deadlock possible

69
TD/TD9/exercice1.c Normal file
View File

@ -0,0 +1,69 @@
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <limits.h>
#include <stdbool.h>
#define N 50
//#define SHOW_DETAILS
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
void* access_res(void* args) {
int id = *(int*)args;
*(int*)args = 0;
for (int i=0; i < INT_MAX; i++) {
pthread_mutex_lock(&lock);
*(int*)args += 1;
pthread_mutex_unlock(&lock);
}
*(int*)args = -1;
return NULL;
}
int main() {
pthread_t tid[N];
int args[N]; // Reuse it for the number of accesses
for (int i=0; i < N; i++) {
args[i] = i;
pthread_create(&(tid[i]), NULL, &access_res, (void*)&(args[i]));
}
bool is_end = false;
while (!is_end) {
#ifdef SHOW_DETAILS
printf("Accesses:\n");
#endif
int max, min, avg;
max = avg = 0;
min = INT_MAX;
for (int i=0; i < N; i++) {
#ifdef SHOW_DETAILS
printf("%d ", args[i]);
#endif
if (args[i] == -1)
is_end = true;
if (args[i] > max)
max = args[i];
if (args[i] < min)
min = args[i];
avg += args[i]/N;
}
#ifdef SHOW_DETAILS
printf("\n");
#endif
printf("min max avg : %d %d %d\n", min, max, avg);
sleep(1);
}
for (int i=0; i < N; i++) {
pthread_join(tid[i], NULL);
}
}

63
TD/TD9/exercice2.c Normal file
View File

@ -0,0 +1,63 @@
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdbool.h>
#include <unistd.h>
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex3 = PTHREAD_MUTEX_INITIALIZER;
void* process_fun(void* arg) {
int id = *(int*)arg;
bool success = false;
pthread_mutex_t* mutexs[3];
if (id == 0) { // Gives deadlock sometimes
mutexs[0] = &mutex1;
mutexs[1] = &mutex2;
mutexs[2] = &mutex3;
} else if (id == 1) {
mutexs[0] = &mutex2;
mutexs[1] = &mutex1;
mutexs[2] = &mutex3;
} else if (id == 2) {
mutexs[0] = &mutex1;
mutexs[1] = &mutex2;
mutexs[2] = &mutex3;
}
while (!success) {
bool csucc = true;
for (int i=0; i < 3; i++) {
if (pthread_mutex_trylock(mutexs[i]) != 0) {
for (int j=0; j < i; j++) {
pthread_mutex_unlock(mutexs[i]);
}
csucc = false;
break;
}
}
success = csucc;
}
printf("I have access\n");
pthread_mutex_unlock(mutexs[0]);
pthread_mutex_unlock(mutexs[1]);
pthread_mutex_unlock(mutexs[2]);
return NULL;
}
int main() {
pthread_t tid[3];
int args[3];
for (int i=0; i < 3; i++) {
args[i] = i;
pthread_create(&(tid[i]), NULL, &process_fun, &(args[i]));
}
for (int i=0; i < 3; i++) {
pthread_join(tid[i], NULL);
}
}

8
TD/TD9/index.md Normal file
View File

@ -0,0 +1,8 @@
# Deadlocks
## Reasoning operating systems
1. Les processus 1 et 4 sont en deadlock.
2. On n'a pas le graphe des tâches qui vont arriver en avance. Donc c'est plus compliqué dans un monde réel
3. 1/6 : same order is deadlock free

View File

@ -1,4 +1,5 @@
#include <string.h>
#include <stdlib.h>
#include "vmap.h"
@ -6,10 +7,34 @@ int main() {
// Add more tests here
VMap* vmap = vmap_init();
char* data1 = my_malloc(vmap, 30*sizeof(char));
char* data2 = my_malloc(vmap, 30*sizeof(char));
char* real1 = malloc(sizeof(char)*32);
real1[0] = 'h';
real1[1] = 'e';
real1[2] = 'l';
real1[3] = 'l';
real1[4] = 'o';
real1[5] = '!';
real1[6] = '\0';
my_copy(vmap, data1, data2, 30*sizeof(char));
char* data1 = my_malloc(vmap, 32*sizeof(char));
char* data2 = my_malloc(vmap, 32*sizeof(char));
vmap_copy_from_memory(vmap, real1, data1, 8);
my_copy(vmap, data1, data2, 32*sizeof(char));
char* real = malloc(sizeof(char)*32);
vmap_copy_to_memory(vmap, data2, real, 7);
if (strcmp(real1, real1)) {
printf("%d\n", strcmp(real, real1));
fprintf(stderr, "copy test failed\n");
return 1;
}
free(real);
free(real1);
my_free(vmap, data1);
my_free(vmap, data2);

View File

@ -24,9 +24,16 @@ VMap* vmap_init();
*/
PageMapInfo* vmap_get_page(VMap* vmap, void* ptr);
void vmap_copy_from_memory(struct VMap *vmap, void *src, void *dst, int size);
/**
* From implemented memory to real memory
*/
void vmap_copy_to_memory(struct VMap *vmap, void *src, void *dst, int size);
/**
* From real memory to implemented memory
*/
void vmap_copy_from_memory(struct VMap *vmap, void *src, void *dst, int size);
void* my_malloc(VMap* vmap, int size);
void my_free(VMap* vmap, void* ptr);
void my_copy(VMap* vmap, void* src, void* dst, int size);

14
TP/TP2/rendu/Makefile Normal file
View File

@ -0,0 +1,14 @@
SRC = $(wildcard *.c)
OBJ = $(filter-out build/main.o build/test.o, $(SRC:%.c=build/%.o))
FLAGS = -Wall -Wextra -g -O3
all: build/test
build/test: test.c $(OBJ)
gcc $^ -o $@ $(FLAGS)
build/%.o: %.c %.h
gcc -c $< -o $@ $(FLAGS)
clean:
rm -f build/*

7
TP/TP2/rendu/config.h Normal file
View File

@ -0,0 +1,7 @@
#ifndef DEF_CONFIG_H
#define DEF_CONFIG_H
#define PAGE_SIZE 4096
#define PAGE_COUNT 100
#endif

125
TP/TP2/rendu/linked_list.c Normal file
View File

@ -0,0 +1,125 @@
// linked list
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "linked_list.h"
linkedList* createLinkedList() {
linkedList *list = (linkedList*)malloc(sizeof(linkedList));
list->head = NULL;
return list;
}
//insert link at the first location
void insertFirst(linkedList *list, int key, void *data) {
//create a link
node *link = (node*) malloc(sizeof(node));
link->key = key;
link->data = data;
//point it to old first node
link->next = list->head;
//point first to new first node
list->head = link;
}
//delete first item
node* deleteFirst(linkedList *list) {
if (!list->head) {
return NULL;
}
//save reference to first link
node *tempLink = list->head;
//mark next to first link as first
list->head = list->head->next;
//return the deleted link
return tempLink;
}
//find a link with given key
node* find(linkedList *list, int key) {
//start from the first link
node* current = list->head;
//if list is empty
if(!current) {
return NULL;
}
//navigate through list
while(current->key != key) {
//if it is last node
if(!current->next) {
return NULL;
} else {
//go to next link
current = current->next;
}
}
//if data found, return the current Link
return current;
}
//delete a link with given key
node* deleteElement(linkedList *list, int key) {
//start from the first link
node* current = list->head;
node* previous = NULL;
//if list is empty
if(!list->head) {
return NULL;
}
//navigate through list
while(current->key != key) {
//if it is last node
if(!current->next) {
return NULL;
} else {
//store reference to current link
previous = current;
//move to next link
current = current->next;
}
}
//found a match, update the link
if(current == list->head) {
//change first to point to next link
list->head = list->head->next;
} else {
//bypass the current link
previous->next = current->next;
}
return current;
}
//is list empty
bool isEmpty(linkedList *list) {
return !list->head;
}
int length(linkedList *list) {
int length = 0;
node *current;
for(current = list->head; current != NULL; current = current->next) {
length++;
}
return length;
}

View File

@ -0,0 +1,24 @@
#ifndef DEF_LLIST_H
#define DEF_LLIST_H
#include <stdbool.h>
typedef struct node {
void *data;
int key;
struct node *next;
} node;
typedef struct linkedList {
node *head;
} linkedList;
linkedList* createLinkedList();
void insertFirst(linkedList *list, int key, void *data);
node* deleteFirst(linkedList *list);
node* find(linkedList *list, int key);
node* deleteElement(linkedList *list, int key);
bool isEmpty(linkedList *list);
int length(linkedList *list);
#endif

181
TP/TP2/rendu/mmap.c Normal file
View File

@ -0,0 +1,181 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#define CHECK_FERROR(f) { if (ferror(f)) {fprintf(stderr, "IO Error"); exit(1);} }
#include "config.h"
#include "mmap.h"
MMap* mmap_init(){
MMap *mmap = malloc(sizeof(MMap));
mmap->size = PAGE_SIZE*PAGE_COUNT;
mmap->memory = malloc(mmap->size);
mmap->count = 0;
mmap->support = malloc(sizeof(PageInfo));
mmap->support->data = malloc(PAGE_SIZE);
mmap->free_list = createLinkedList();
// insert PAGE_COUNT pages in the free list
for (int i=0; i < PAGE_COUNT; i++) {
PageInfo *page = malloc(sizeof(PageInfo));
page->data = mmap->memory + i*PAGE_SIZE;
page->key = i;
insertFirst(mmap->free_list, i, page);
}
mmap->alloc_list = createLinkedList();
mmap->swap = fopen("/tmp/myswap", "wb+");
int tmp = -1;
for (int i=0; i < PAGE_COUNT; i++) {
fwrite(&tmp, sizeof(int), 1, mmap->swap);
}
char tmp2 = '\0';
for (int i=0; i < PAGE_COUNT*PAGE_SIZE; i++) {
fwrite(&tmp2, 1, 1, mmap->swap);
}
return mmap;
}
void mmap_clean(MMap *mmap) {
free(mmap->memory);
fclose(mmap->swap);
free(mmap);
remove("/tmp/myswap");
}
PageInfo* page_alloc(MMap *mmap) {
PageInfo *page = NULL;
page = page_free(mmap);
if (page) {
insertFirst(mmap->alloc_list, page->key, page);
mmap->count++;
}
return page;
}
PageInfo* page_free(MMap *mmap) {
PageInfo *page = NULL;
node *node = deleteFirst(mmap->free_list);
if (node) {
page = node->data;
}
return page;
}
int check_page_free_list(MMap *mmap) {
return length(mmap->free_list);
}
int check_page_alloc(MMap *mmap) {
return length(mmap->alloc_list);
}
int move_to_swap(MMap *mmap, PageInfo *page) {
int key = -1;
fseek(mmap->swap, 0, SEEK_SET);
CHECK_FERROR(mmap->swap);
for (int i=0; i < PAGE_COUNT; i++) {
fread(&key, sizeof(int), 1, mmap->swap);
CHECK_FERROR(mmap->swap);
if (key == -1) {
fseek(mmap->swap, i*sizeof(int), SEEK_SET);
CHECK_FERROR(mmap->swap);
fwrite(&page->key, sizeof(int), 1, mmap->swap);
CHECK_FERROR(mmap->swap);
fseek(mmap->swap, PAGE_COUNT*sizeof(int) + i*PAGE_SIZE, SEEK_SET);
CHECK_FERROR(mmap->swap);
fwrite(page->data, PAGE_SIZE, 1, mmap->swap);
CHECK_FERROR(mmap->swap);
return 0;
}
}
return -1;
}
PageInfo* read_from_swap(MMap* mmap, PageInfo *page) {
int key = -1;
fseek(mmap->swap, 0, SEEK_SET);
CHECK_FERROR(mmap->swap);
for (int i=0; i < PAGE_COUNT; i++) {
(void)fread(&key, sizeof(int), 1, mmap->swap);
CHECK_FERROR(mmap->swap);
if (key != page->key)
continue;
fseek(mmap->swap, PAGE_COUNT*sizeof(int) + i*PAGE_SIZE, SEEK_SET);
CHECK_FERROR(mmap->swap);
fread(page->data, PAGE_SIZE, 1, mmap->swap);
CHECK_FERROR(mmap->swap);
fseek(mmap->swap, i*sizeof(int), SEEK_SET);
CHECK_FERROR(mmap->swap);
int tmp = -1;
fwrite(&tmp, sizeof(int), 1, mmap->swap);
CHECK_FERROR(mmap->swap);
return page;
}
return NULL;
}
PageInfo* page_lookup(MMap* mmap, int key) {
node* data = find(mmap->alloc_list, key);
if (data) {
return data->data;
}
mmap->support->key = key;
PageInfo* page = read_from_swap(mmap, mmap->support);
if (page) { // Move one elem from mem to swap
PageInfo* swapped_page = deleteFirst(mmap->alloc_list)->data;
move_to_swap(mmap, swapped_page);
memcpy(swapped_page->data, mmap->support->data, PAGE_SIZE);
swapped_page->key = key;
insertFirst(mmap->alloc_list, key, swapped_page);
return page;
}
return NULL;
}
void page_remove(MMap *mmap, int key) {
PageInfo* page = page_lookup(mmap, key);
if (!page)
return;
deleteElement(mmap->alloc_list, key);
mmap->count--;
}
PageInfo *page_create(MMap *mmap, bool *moved_to_swap) {
if (mmap->count >= 2*PAGE_COUNT)
return NULL;
PageInfo* page = page_alloc(mmap);
*moved_to_swap = false;
if (page)
return page;
// Another page has been moved to swap
*moved_to_swap = true;
page = deleteFirst(mmap->alloc_list)->data;
move_to_swap(mmap, page);
// Reuse swapped page for the new one
page->key = mmap->count;
mmap->count++;
insertFirst(mmap->alloc_list, page->key, page);
return page;
}

36
TP/TP2/rendu/mmap.h Normal file
View File

@ -0,0 +1,36 @@
#ifndef DEF_MMAP_H
#define DEF_MMAP_H
#include <stdio.h>
#include <stdbool.h>
#include "linked_list.h"
typedef struct PageInfo {
int key;
void *data;
} PageInfo;
typedef struct MMap {
void *memory;
int size;
int count;
PageInfo *support;
linkedList *free_list;
linkedList *alloc_list;
FILE *swap;
} MMap;
MMap* mmap_init();
void mmap_clean(MMap *mmap);
PageInfo* page_alloc(MMap *mmap);
PageInfo* page_free(MMap *mmap);
int check_page_free_list(MMap *mmap);
int check_page_alloc(MMap *mmap);
int move_to_swap(MMap *mmap, PageInfo *page);
PageInfo* read_from_swap(MMap* mmap, PageInfo *page);
PageInfo *page_lookup(MMap *mmap, int key);
void page_remove(MMap *mmap, int key);
PageInfo *page_create(MMap *mmap, bool *moved_to_swap);
#endif

43
TP/TP2/rendu/test.c Normal file
View File

@ -0,0 +1,43 @@
#include <string.h>
#include <stdlib.h>
#include "vmap.h"
int main() {
// Add more tests here
VMap* vmap = vmap_init();
char* real1 = malloc(sizeof(char)*32);
real1[0] = 'h';
real1[1] = 'e';
real1[2] = 'l';
real1[3] = 'l';
real1[4] = 'o';
real1[5] = '!';
real1[6] = '\0';
char* data1 = my_malloc(vmap, 32*sizeof(char));
char* data2 = my_malloc(vmap, 32*sizeof(char));
vmap_copy_from_memory(vmap, real1, data1, 8);
my_copy(vmap, data1, data2, 32*sizeof(char));
char* real = malloc(sizeof(char)*32);
vmap_copy_to_memory(vmap, data2, real, 7);
if (strcmp(real1, real1)) {
printf("%d\n", strcmp(real, real1));
fprintf(stderr, "copy test failed\n");
return 1;
}
free(real);
free(real1);
my_free(vmap, data1);
my_free(vmap, data2);
return 0;
}

162
TP/TP2/rendu/vmap.c Normal file
View File

@ -0,0 +1,162 @@
#include <inttypes.h>
#include <stdbool.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
#include "config.h"
#include "vmap.h"
VMap* vmap_init() {
VMap* vmap = (VMap*)malloc(sizeof(VMap));
vmap->mmap = mmap_init();
vmap->pages = createLinkedList();
vmap->index = 0;
return vmap;
}
PageMapInfo* vmap_new_page(VMap* vmap) {
PageMapInfo* page = (PageMapInfo*)malloc(sizeof(PageMapInfo));
bool moved;
page->key = page_create(vmap->mmap, &moved)->key;
page->start = vmap->index;
page->cursor = 0;
page->nb_allocs = 0;
page->swapped = moved;
vmap->index += PAGE_SIZE;
insertFirst(vmap->pages, page->start, page);
return page;
}
int page_map_available_size(PageMapInfo* page) {
int avail = page->start + PAGE_SIZE - page->cursor;
assert(avail >= 0);
return avail;
}
void vmap_free_page(VMap* vmap, PageMapInfo* page) {
deleteElement(vmap->pages, page->key);
page_remove(vmap->mmap, page->key);
free(page);
}
PageMapInfo* vmap_get_page(VMap* vmap, void* ptr) {
node* current = vmap->pages->head;
while (current) {
PageMapInfo* page = current->data;
if (page->start <= (int64_t)ptr && page->start+PAGE_SIZE > (int64_t)ptr) {
return page;
}
current = current->next;
}
return NULL;
}
void vmap_unswap(VMap* vmap, PageMapInfo* page) {
if (!page->swapped)
return;
read_from_swap(vmap->mmap, page_lookup(vmap->mmap, page->key));
page->swapped = false;
}
void* my_malloc(VMap* vmap, int size) {
if (size > PAGE_SIZE) {
fprintf(stderr, "my_malloc: Requesting too much space: %d > %d\n", size, PAGE_SIZE);
exit(1);
}
// Parcours de la liste pour trouver un candidat. Sinon, nouvelle page
node* current = vmap->pages->head;
while (current) {
PageMapInfo* page = current->data;
if (page_map_available_size(page) >= size) {
void* ptr = (void*)((uint64_t)page->start+page->cursor);
page->cursor += size;
page->nb_allocs++;
return ptr;
}
current = current->next;
}
PageMapInfo* page = vmap_new_page(vmap);
void* ptr = (void*)((uint64_t)page->start+page->cursor);
page->cursor += size;
page->nb_allocs++;
return ptr;
}
void my_free(VMap* vmap, void* ptr) {
PageMapInfo* page = vmap_get_page(vmap, ptr);
if (!page) {
fprintf(stderr, "my_free: Double free or memory corrupted\n");
exit(1);
}
page->nb_allocs--;
if (page->nb_allocs == 0) {
vmap_free_page(vmap, page);
}
}
void my_copy(VMap* vmap, void* src, void* dst, int size) {
PageMapInfo* page_map_src = vmap_get_page(vmap, src);
PageMapInfo* page_map_dst = vmap_get_page(vmap, dst);
if (((int64_t)src % PAGE_SIZE) + size >= PAGE_SIZE) {
fprintf(stderr, "my_copy: size not available in this src page\n");
exit(1);
}
if (((int64_t)dst % PAGE_SIZE) + size >= PAGE_SIZE) {
fprintf(stderr, "my_copy: size not available in this dst page\n");
exit(1);
}
if (page_map_src->swapped) {
vmap_unswap(vmap, page_map_src);
}
if (page_map_dst->swapped) {
vmap_unswap(vmap, page_map_dst);
}
PageInfo* page_src = page_lookup(vmap->mmap, page_map_src->key);
PageInfo* page_dst = page_lookup(vmap->mmap, page_map_dst->key);
memcpy(page_dst->data+((int64_t)src % PAGE_SIZE), page_src->data+((int64_t)dst % PAGE_SIZE), size);
}
void vmap_copy_to_memory(struct VMap *vmap, void *src, void *dst, int size) {
PageMapInfo* page_map = vmap_get_page(vmap, src);
PageInfo* page = page_lookup(vmap->mmap, page_map->key);
if (!page) {
fprintf(stderr, "vmap_copy_to_memory: page not found\n");
exit(1);
}
memcpy(page->data + ((int64_t)src % PAGE_SIZE), dst, size);
}
void vmap_copy_from_memory(struct VMap *vmap, void *src, void *dst, int size) {
PageMapInfo* page_map = vmap_get_page(vmap, dst);
PageInfo* page = page_lookup(vmap->mmap, page_map->key);
if (!page) {
fprintf(stderr, "vmap_copy_to_memory: page not found\n");
exit(1);
}
memcpy(src, page->data + ((int64_t)dst % PAGE_SIZE), size);
}

41
TP/TP2/rendu/vmap.h Normal file
View File

@ -0,0 +1,41 @@
#ifndef DEF_VMAP_H
#define DEF_VMAP_H
#include "mmap.h"
typedef struct VMap {
MMap* mmap;
linkedList* pages;
int index; // index of virt memory
} VMap;
typedef struct PageMapInfo {
int start;
int key; // key for mmap
int cursor; // Last allocation end
int nb_allocs; // Free page if 0
bool swapped;
} PageMapInfo;
VMap* vmap_init();
/**
* Get page hosting a certain pointer
*/
PageMapInfo* vmap_get_page(VMap* vmap, void* ptr);
/**
* From implemented memory to real memory
*/
void vmap_copy_to_memory(struct VMap *vmap, void *src, void *dst, int size);
/**
* From real memory to implemented memory
*/
void vmap_copy_from_memory(struct VMap *vmap, void *src, void *dst, int size);
void* my_malloc(VMap* vmap, int size);
void my_free(VMap* vmap, void* ptr);
void my_copy(VMap* vmap, void* src, void* dst, int size);
#endif

BIN
TP/TP2/sujet.pdf Normal file

Binary file not shown.