tipe/src/cnn/free.c
2023-02-19 13:38:33 +01:00

134 lines
3.7 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include "../include/memory_management.h"
#include "include/free.h"
void free_a_cube_input_layer(Network* network, int pos, int depth, int dim) {
for (int i=0; i < depth; i++) {
for (int j=0; j < dim; j++) {
gree(network->input[pos][i][j]);
gree(network->input_z[pos][i][j]);
}
gree(network->input[pos][i]);
gree(network->input_z[pos][i]);
}
gree(network->input[pos]);
gree(network->input_z[pos]);
}
void free_a_line_input_layer(Network* network, int pos) {
gree(network->input[pos][0][0]);
gree(network->input_z[pos][0][0]);
gree(network->input[pos][0]);
gree(network->input_z[pos][0]);
gree(network->input[pos]);
gree(network->input_z[pos]);
}
void free_2d_pooling(Network* network, int pos) {
free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]);
}
void free_convolution(Network* network, int pos) {
Kernel_cnn* k_pos = network->kernel[pos]->cnn;
int c = k_pos->columns;
int k_size = k_pos->k_size;
int r = k_pos->rows;
int bias_size = network->width[pos+1]; // Not sure of the value
free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]);
for (int i=0; i < c; i++) {
for (int j=0; j < bias_size; j++) {
gree(k_pos->bias[i][j]);
gree(k_pos->d_bias[i][j]);
}
gree(k_pos->bias[i]);
gree(k_pos->d_bias[i]);
}
gree(k_pos->bias);
gree(k_pos->d_bias);
for (int i=0; i < r; i++) {
for (int j=0; j < c; j++) {
for (int k=0; k < k_size; k++) {
gree(k_pos->weights[i][j][k]);
gree(k_pos->d_weights[i][j][k]);
}
gree(k_pos->weights[i][j]);
gree(k_pos->d_weights[i][j]);
}
gree(k_pos->weights[i]);
gree(k_pos->d_weights[i]);
}
gree(k_pos->weights);
gree(k_pos->d_weights);
gree(k_pos);
}
void free_dense(Network* network, int pos) {
free_a_line_input_layer(network, pos+1);
Kernel_nn* k_pos = network->kernel[pos]->nn;
int dim = k_pos->size_input;
for (int i=0; i < dim; i++) {
gree(k_pos->weights[i]);
gree(k_pos->d_weights[i]);
}
gree(k_pos->weights);
gree(k_pos->d_weights);
gree(k_pos->bias);
gree(k_pos->d_bias);
gree(k_pos);
}
void free_dense_linearisation(Network* network, int pos) {
free_a_line_input_layer(network, pos+1);
Kernel_nn* k_pos = network->kernel[pos]->nn;
int dim = k_pos->size_input;
for (int i=0; i < dim; i++) {
gree(k_pos->weights[i]);
gree(k_pos->d_weights[i]);
}
gree(k_pos->weights);
gree(k_pos->d_weights);
gree(k_pos->bias);
gree(k_pos->d_bias);
gree(k_pos);
}
void free_network_creation(Network* network) {
free_a_cube_input_layer(network, 0, network->depth[0], network->width[0]);
for (int i=0; i < network->max_size-1; i++) {
gree(network->kernel[i]);
}
gree(network->width);
gree(network->depth);
gree(network->kernel);
gree(network->input);
gree(network->input_z);
gree(network);
}
void free_network(Network* network) {
for (int i=network->size-2; i>=0; i--) {
if (network->kernel[i]->cnn != NULL) { // Convolution
free_convolution(network, i);
} else if (network->kernel[i]->nn != NULL) {
if (network->kernel[i]->linearisation == 0) { // Dense non linearised
free_dense(network, i);
} else { // Dense lineariation
free_dense_linearisation(network, i);
}
} else { // Pooling
free_2d_pooling(network, i);
}
}
free_network_creation(network);
}