mirror of
https://github.com/augustin64/projet-tipe
synced 2025-01-23 23:26:25 +01:00
110 lines
3.8 KiB
Plaintext
110 lines
3.8 KiB
Plaintext
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
|
|
#include "../src/common/include/memory_management.h"
|
|
#include "../src/common/include/colors.h"
|
|
#include "../src/common/include/utils.h"
|
|
#include "../src/cnn/include/function.h"
|
|
|
|
#include "../src/cnn/include/config.h"
|
|
|
|
__global__ void local_kernel(funcPtr f, float*** input, int depth, int rows, int columns) {
|
|
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
|
|
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
|
|
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < rows
|
|
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < columns
|
|
|
|
if (idx >= depth || idy >= rows || idz >= columns) {
|
|
return;
|
|
}
|
|
|
|
input[idx][idy][idz] = (*f)(input[idx][idy][idz]);
|
|
}
|
|
|
|
|
|
void test1(int activation, bool use_local_kernel) {
|
|
printf("Test sur la fonction %d\n", activation);
|
|
printf("\tInitialisation OK\n");
|
|
// Initialise values
|
|
int depth = 10;
|
|
int rows = 10;
|
|
int columns = 10;
|
|
|
|
float*** input = (float***)nalloc(depth, sizeof(float**));
|
|
float*** input_initial = (float***)malloc(depth*sizeof(float**));
|
|
for (int i=0; i < depth; i++) {
|
|
input[i] = (float**)nalloc(rows, sizeof(float*));
|
|
input_initial[i] = (float**)malloc(rows*sizeof(float*));
|
|
for (int j=0; j < rows; j++) {
|
|
input[i][j] = (float*)nalloc(columns, sizeof(float));
|
|
input_initial[i][j] = (float*)malloc(columns*sizeof(float));
|
|
for (int k=0; k < columns; k++) {
|
|
input[i][j][k] = rand()/(float)RAND_MAX;
|
|
input_initial[i][j][k] = input[i][j][k];
|
|
}
|
|
}
|
|
}
|
|
printf("\t" GREEN "OK\n" RESET);
|
|
|
|
funcPtr func_cpu = get_activation_function(activation);
|
|
|
|
if (!use_local_kernel) {
|
|
printf("\tCalcul par CUDA\n");
|
|
apply_function_input(activation, input, depth, rows, columns);
|
|
} else {
|
|
printf("\tCalcul par CUDA sur le kernel local\n");
|
|
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(rows, BLOCKSIZE_y), i_div_up(columns, BLOCKSIZE_z));
|
|
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
|
|
|
|
funcPtr function_cuda = get_activation_function_cuda(activation);
|
|
|
|
local_kernel<<<gridSize, blockSize>>>(function_cuda, input, depth, rows, columns);
|
|
|
|
gpuErrchk( cudaPeekAtLastError() );
|
|
gpuErrchk( cudaDeviceSynchronize() );
|
|
}
|
|
printf("\t" GREEN "OK\n" RESET);
|
|
|
|
printf("\tVérification des résultats\n");
|
|
for (int i=0; i < depth; i++) {
|
|
for (int j=0; j < rows; j++) {
|
|
for (int k=0; k < columns; k++) {
|
|
if (fabs((*func_cpu)(input_initial[i][j][k]) - input[i][j][k]) > 1e-6) {
|
|
printf_error((char*)"Les résultats ne coincident pas\n");
|
|
printf("Différence %e\n", fabs((*func_cpu)(input_initial[i][j][k]) - input[i][j][k]));
|
|
exit(1);
|
|
}
|
|
}
|
|
gree(input[i][j], false);
|
|
free(input_initial[i][j]);
|
|
}
|
|
gree(input[i], false);
|
|
free(input_initial[i]);
|
|
}
|
|
gree(input, false);
|
|
free(input_initial);
|
|
|
|
printf("\t" GREEN "OK\n" RESET);
|
|
printf(GREEN "OK\n" RESET);
|
|
}
|
|
|
|
int main() {
|
|
printf("Checking CUDA compatibility.\n");
|
|
bool cuda_compatible = cuda_setup(true);
|
|
if (!cuda_compatible) {
|
|
printf(RED "CUDA not compatible, skipping tests.\n" RESET);
|
|
return 0;
|
|
}
|
|
printf(GREEN "OK\n" RESET);
|
|
|
|
for (int i=1; i < 7; i++) {
|
|
if (i != 5) { // Exclude SOFTMAX
|
|
test1(i, false); // use function i
|
|
test1(-i, false); // use function i'
|
|
test1(i, true); // use function i in the kernel declared in this file
|
|
test1(-i, true); // use function i' in the kernel declared in this file
|
|
}
|
|
}
|
|
return 0;
|
|
} |