mirror of
https://github.com/augustin64/projet-tipe
synced 2025-03-14 06:45:22 +01:00
227 lines
8.5 KiB
C
227 lines
8.5 KiB
C
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#include "include/update.h"
|
|
#include "include/struct.h"
|
|
|
|
#include "include/config.h"
|
|
|
|
float clip(float a) {
|
|
if (a > NETWORK_CLIP_VALUE) {
|
|
return NETWORK_CLIP_VALUE;
|
|
}
|
|
if (a < -NETWORK_CLIP_VALUE) {
|
|
return -NETWORK_CLIP_VALUE;
|
|
}
|
|
return a;
|
|
}
|
|
|
|
void update_weights(Network* network, Network* d_network) {
|
|
int n = network->size;
|
|
|
|
for (int i=0; i < (n-1); i++) {
|
|
Kernel* k_i = network->kernel[i];
|
|
Kernel* dk_i = d_network->kernel[i];
|
|
|
|
int input_depth = network->depth[i];
|
|
int input_width = network->width[i];
|
|
|
|
int output_depth = network->depth[i+1];
|
|
int output_width = network->width[i+1];
|
|
|
|
if (k_i->cnn) { // Convolution
|
|
Kernel_cnn* cnn = k_i->cnn;
|
|
Kernel_cnn* d_cnn = dk_i->cnn;
|
|
int k_size = cnn->k_size;
|
|
for (int a=0; a < input_depth; a++) {
|
|
for (int b=0; b < output_depth; b++) {
|
|
for (int c=0; c < k_size; c++) {
|
|
for (int d=0; d < k_size; d++) {
|
|
#ifdef ADAM_CNN_WEIGHTS
|
|
d_cnn->v_d_weights[a][b][c][d] = BETA_1*d_cnn->v_d_weights[a][b][c][d] + (1-BETA_1)*d_cnn->d_weights[a][b][c][d];
|
|
d_cnn->s_d_weights[a][b][c][d] = BETA_2*d_cnn->s_d_weights[a][b][c][d] + (1-BETA_2)*d_cnn->d_weights[a][b][c][d]*d_cnn->d_weights[a][b][c][d];
|
|
cnn->weights[a][b][c][d] -= ALPHA*(d_cnn->v_d_weights[a][b][c][d]/sqrt(d_cnn->s_d_weights[a][b][c][d]+Epsilon));
|
|
#else
|
|
cnn->weights[a][b][c][d] -= network->learning_rate * d_cnn->d_weights[a][b][c][d];
|
|
#endif
|
|
d_cnn->d_weights[a][b][c][d] = 0;
|
|
|
|
cnn->weights[a][b][c][d] = clip(cnn->weights[a][b][c][d]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (k_i->nn) { // Full connection
|
|
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
|
|
Kernel_nn* nn = k_i->nn;
|
|
Kernel_nn* d_nn = dk_i->nn;
|
|
|
|
for (int a=0; a < input_width; a++) {
|
|
for (int b=0; b < output_width; b++) {
|
|
#ifdef ADAM_DENSE_WEIGHTS
|
|
d_nn->v_d_weights[a][b] = BETA_1*d_nn->v_d_weights[a][b] + (1-BETA_1)*d_nn->d_weights[a][b];
|
|
d_nn->s_d_weights[a][b] = BETA_2*d_nn->s_d_weights[a][b] + (1-BETA_2)*d_nn->d_weights[a][b]*d_nn->d_weights[a][b];
|
|
nn->weights[a][b] -= ALPHA*(d_nn->v_d_weights[a][b]/sqrt(d_nn->s_d_weights[a][b]+Epsilon));
|
|
#else
|
|
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
|
#endif
|
|
d_nn->d_weights[a][b] = 0;
|
|
}
|
|
}
|
|
} else { // Matrice -> vecteur
|
|
Kernel_nn* nn = k_i->nn;
|
|
Kernel_nn* d_nn = dk_i->nn;
|
|
|
|
int size_input = input_width*input_width*input_depth;
|
|
|
|
for (int a=0; a < size_input; a++) {
|
|
for (int b=0; b < output_width; b++) {
|
|
#ifdef ADAM_DENSE_WEIGHTS
|
|
d_nn->v_d_weights[a][b] = BETA_1*d_nn->v_d_weights[a][b] + (1-BETA_1)*d_nn->d_weights[a][b];
|
|
d_nn->s_d_weights[a][b] = BETA_2*d_nn->s_d_weights[a][b] + (1-BETA_2)*d_nn->d_weights[a][b]*d_nn->d_weights[a][b];
|
|
nn->weights[a][b] -= ALPHA*(d_nn->d_weights[a][b]/sqrt(d_nn->s_d_weights[a][b]+Epsilon));
|
|
#else
|
|
nn->weights[a][b] -= network->learning_rate * d_nn->d_weights[a][b];
|
|
#endif
|
|
d_nn->d_weights[a][b] = 0;
|
|
|
|
nn->weights[a][b] = clip(nn->weights[a][b]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Une couche de pooling ne nécessite pas de traitement
|
|
}
|
|
}
|
|
|
|
void update_bias(Network* network, Network* d_network) {
|
|
int n = network->size;
|
|
|
|
for (int i=0; i < (n-1); i++) {
|
|
Kernel* k_i = network->kernel[i];
|
|
Kernel* dk_i = d_network->kernel[i];
|
|
int output_width = network->width[i+1];
|
|
int output_depth = network->depth[i+1];
|
|
|
|
if (k_i->cnn) { // Convolution
|
|
Kernel_cnn* cnn = k_i->cnn;
|
|
Kernel_cnn* d_cnn = dk_i->cnn;
|
|
|
|
for (int a=0; a < output_depth; a++) {
|
|
for (int b=0; b < output_width; b++) {
|
|
for (int c=0; c < output_width; c++) {
|
|
#ifdef ADAM_CNN_BIAS
|
|
d_cnn->s_d_bias[a][b][c] = BETA_2*d_cnn->s_d_bias[a][b][c] + (1-BETA_2)*d_cnn->d_bias[a][b][c]*d_cnn->d_bias[a][b][c];
|
|
cnn->bias[a][b][c] -= ALPHA*(d_cnn->d_bias[a][b][c]/sqrt(d_cnn->s_d_bias[a][b][c]+Epsilon));
|
|
#else
|
|
cnn->bias[a][b][c] -= network->learning_rate * d_cnn->d_bias[a][b][c];
|
|
#endif
|
|
d_cnn->d_bias[a][b][c] = 0;
|
|
|
|
cnn->bias[a][b][c] = clip(cnn->bias[a][b][c]);
|
|
}
|
|
}
|
|
}
|
|
} else if (k_i->nn) { // Full connection
|
|
Kernel_nn* nn = k_i->nn;
|
|
Kernel_nn* d_nn = dk_i->nn;
|
|
|
|
for (int a=0; a < output_width; a++) {
|
|
#ifdef ADAM_DENSE_BIAS
|
|
d_nn->s_d_bias[a] = BETA_2*d_nn->s_d_bias[a] + (1-BETA_2)*d_nn->d_bias[a]*d_nn->d_bias[a];
|
|
nn->bias[a] -= ALPHA*(d_nn->d_bias[a]/sqrt(d_nn->s_d_bias[a]+Epsilon));
|
|
#else
|
|
nn->bias[a] -= network->learning_rate * d_nn->d_bias[a];
|
|
#endif
|
|
d_nn->d_bias[a] = 0;
|
|
|
|
nn->bias[a] = clip(nn->bias[a]);
|
|
}
|
|
}
|
|
// Une couche de pooling ne nécessite pas de traitement
|
|
}
|
|
}
|
|
|
|
void reset_d_weights(Network* network) {
|
|
int n = network->size;
|
|
|
|
for (int i=0; i < (n-1); i++) {
|
|
Kernel* k_i = network->kernel[i];
|
|
Kernel* k_i_1 = network->kernel[i+1];
|
|
|
|
int input_depth = network->depth[i];
|
|
int input_width = network->width[i];
|
|
|
|
int output_depth = network->depth[i+1];
|
|
int output_width = network->width[i+1];
|
|
|
|
if (k_i->cnn) { // Convolution
|
|
Kernel_cnn* cnn = k_i_1->cnn;
|
|
|
|
int k_size = cnn->k_size;
|
|
|
|
for (int a=0; a < input_depth; a++) {
|
|
for (int b=0; b < output_depth; b++) {
|
|
for (int c=0; c < k_size; c++) {
|
|
for (int d=0; d < k_size; d++) {
|
|
cnn->d_weights[a][b][c][d] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (k_i->nn) { // Full connection
|
|
if (k_i->linearisation == DOESNT_LINEARISE) { // Vecteur -> Vecteur
|
|
Kernel_nn* nn = k_i_1->nn;
|
|
|
|
for (int a=0; a < input_width; a++) {
|
|
for (int b=0; b < output_width; b++) {
|
|
nn->d_weights[a][b] = 0;
|
|
}
|
|
}
|
|
} else { // Matrice -> vecteur
|
|
Kernel_nn* nn = k_i_1->nn;
|
|
|
|
int size_input = input_width*input_width*input_depth;
|
|
|
|
for (int a=0; a < size_input; a++) {
|
|
for (int b=0; b < output_width; b++) {
|
|
nn->d_weights[a][b] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Une couche de pooling ne nécessite pas de traitement
|
|
}
|
|
}
|
|
|
|
void reset_d_bias(Network* network) {
|
|
int n = network->size;
|
|
|
|
for (int i=0; i < (n-1); i++) {
|
|
Kernel* k_i = network->kernel[i];
|
|
Kernel* k_i_1 = network->kernel[i+1];
|
|
|
|
int output_width = network->width[i+1];
|
|
int output_depth = network->depth[i+1];
|
|
|
|
if (k_i->cnn) { // Convolution
|
|
Kernel_cnn* cnn = k_i_1->cnn;
|
|
|
|
for (int a=0; a < output_depth; a++) {
|
|
for (int b=0; b < output_width; b++) {
|
|
for (int c=0; c < output_width; c++) {
|
|
cnn->d_bias[a][b][c] = 0;
|
|
}
|
|
}
|
|
}
|
|
} else if (k_i->nn) { // Full connection
|
|
Kernel_nn* nn = k_i_1->nn;
|
|
|
|
for (int a=0; a < output_width; a++) {
|
|
nn->d_bias[a] = 0;
|
|
}
|
|
}
|
|
// Une couche de pooling ne nécessite pas de traitement
|
|
}
|
|
} |