mirror of
https://github.com/augustin64/projet-tipe
synced 2025-03-13 14:25:21 +01:00
320 lines
11 KiB
C
320 lines
11 KiB
C
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <inttypes.h>
|
|
|
|
#include "../include/colors.h"
|
|
#include "../include/utils.h"
|
|
#include "include/function.h"
|
|
#include "include/struct.h"
|
|
|
|
#include "include/neuron_io.h"
|
|
|
|
#define MAGIC_NUMBER 1012
|
|
|
|
#define bufferAdd(val) {buffer[indice_buffer] = val; indice_buffer++;}
|
|
|
|
void write_network(char* filename, Network* network) {
|
|
FILE *ptr;
|
|
int size = network->size;
|
|
int type_couche[size-1];
|
|
int indice_buffer = 0;
|
|
|
|
ptr = fopen(filename, "wb");
|
|
|
|
// Le buffer est composé de:
|
|
// - MAGIC_NUMBER (1)
|
|
// - size (2)
|
|
// - network->initialisation (3)
|
|
// - network->dropout (4)
|
|
// - network->width[i] & network->depth[i] (4+network->size*2)
|
|
// - type_couche[i] (3+network->size*3) - On exclue la dernière couche
|
|
uint32_t buffer[(network->size)*3+3];
|
|
|
|
bufferAdd(MAGIC_NUMBER);
|
|
bufferAdd(size);
|
|
bufferAdd(network->initialisation);
|
|
bufferAdd(network->dropout);
|
|
|
|
// Écriture du header
|
|
for (int i=0; i < size; i++) {
|
|
bufferAdd(network->width[i]);
|
|
bufferAdd(network->depth[i]);
|
|
}
|
|
|
|
for (int i=0; i < size-1; i++) {
|
|
if ((!network->kernel[i]->cnn)&&(!network->kernel[i]->nn)) {
|
|
type_couche[i] = 2;
|
|
} else if (!network->kernel[i]->cnn) {
|
|
type_couche[i] = 1;
|
|
} else {
|
|
type_couche[i] = 0;
|
|
}
|
|
bufferAdd(type_couche[i]);
|
|
}
|
|
|
|
fwrite(buffer, sizeof(buffer), 1, ptr);
|
|
|
|
// Écriture du pré-corps et corps
|
|
for (int i=0; i < size-1; i++) {
|
|
write_couche(network, i, type_couche[i], ptr);
|
|
}
|
|
|
|
fclose(ptr);
|
|
}
|
|
|
|
|
|
void write_couche(Network* network, int indice_couche, int type_couche, FILE* ptr) {
|
|
Kernel* kernel = network->kernel[indice_couche];
|
|
int indice_buffer = 0;
|
|
if (type_couche == 0) { // Cas du CNN
|
|
Kernel_cnn* cnn = kernel->cnn;
|
|
int output_dim = network->width[indice_couche+1];
|
|
|
|
// Écriture du pré-corps
|
|
uint32_t pre_buffer[5];
|
|
pre_buffer[0] = kernel->activation;
|
|
pre_buffer[1] = kernel->linearisation;
|
|
pre_buffer[2] = cnn->k_size;
|
|
pre_buffer[3] = cnn->rows;
|
|
pre_buffer[4] = cnn->columns;
|
|
fwrite(pre_buffer, sizeof(pre_buffer), 1, ptr);
|
|
|
|
// Écriture du corps
|
|
float buffer[cnn->columns*(cnn->k_size*cnn->k_size*cnn->rows+output_dim*output_dim)];
|
|
|
|
for (int i=0; i < cnn->columns; i++) {
|
|
for (int j=0; j < output_dim; j++) {
|
|
for (int k=0; k < output_dim; k++) {
|
|
bufferAdd(cnn->bias[i][j][k]);
|
|
}
|
|
}
|
|
}
|
|
for (int i=0; i < cnn->rows; i++) {
|
|
for (int j=0; j < cnn->columns; j++) {
|
|
for (int k=0; k < cnn->k_size; k++) {
|
|
for (int l=0; l < cnn->k_size; l++) {
|
|
bufferAdd(cnn->w[i][j][k][l]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fwrite(buffer, sizeof(buffer), 1, ptr);
|
|
} else if (type_couche == 1) { // Cas du NN
|
|
Kernel_nn* nn = kernel->nn;
|
|
|
|
// Écriture du pré-corps
|
|
uint32_t pre_buffer[4];
|
|
pre_buffer[0] = kernel->activation;
|
|
pre_buffer[1] = kernel->linearisation;
|
|
pre_buffer[2] = nn->input_units;
|
|
pre_buffer[3] = nn->output_units;
|
|
fwrite(pre_buffer, sizeof(pre_buffer), 1, ptr);
|
|
|
|
// Écriture du corps
|
|
float buffer[(1+nn->input_units)*nn->output_units];
|
|
for (int i=0; i < nn->output_units; i++) {
|
|
bufferAdd(nn->bias[i]);
|
|
}
|
|
for (int i=0; i < nn->input_units; i++) {
|
|
for (int j=0; j < nn->output_units; j++) {
|
|
bufferAdd(nn->weights[i][j]);
|
|
}
|
|
}
|
|
fwrite(buffer, sizeof(buffer), 1, ptr);
|
|
} else if (type_couche == 2) { // Cas du Pooling Layer
|
|
uint32_t pre_buffer[2];
|
|
pre_buffer[0] = kernel->linearisation;
|
|
pre_buffer[1] = kernel->pooling;
|
|
fwrite(pre_buffer, sizeof(pre_buffer), 1, ptr);
|
|
}
|
|
}
|
|
|
|
|
|
Network* read_network(char* filename) {
|
|
FILE *ptr;
|
|
Network* network = (Network*)nalloc(sizeof(Network));
|
|
|
|
ptr = fopen(filename, "rb");
|
|
|
|
uint32_t magic;
|
|
uint32_t size;
|
|
uint32_t initialisation;
|
|
uint32_t dropout;
|
|
uint32_t tmp;
|
|
|
|
fread(&magic, sizeof(uint32_t), 1, ptr);
|
|
if (magic != MAGIC_NUMBER) {
|
|
printf("Incorrect magic number !\n");
|
|
exit(1);
|
|
}
|
|
|
|
// Lecture des constantes du réseau
|
|
fread(&size, sizeof(uint32_t), 1, ptr);
|
|
network->size = size;
|
|
network->max_size = size;
|
|
fread(&initialisation, sizeof(uint32_t), 1, ptr);
|
|
network->initialisation = initialisation;
|
|
fread(&dropout, sizeof(uint32_t), 1, ptr);
|
|
network->dropout = dropout;
|
|
|
|
// Lecture de la taille de l'entrée des différentes matrices
|
|
network->width = (int*)nalloc(sizeof(int)*size);
|
|
network->depth = (int*)nalloc(sizeof(int)*size);
|
|
|
|
for (int i=0; i < (int)size; i++) {
|
|
fread(&tmp, sizeof(uint32_t), 1, ptr);
|
|
network->width[i] = tmp;
|
|
fread(&tmp, sizeof(uint32_t), 1, ptr);
|
|
network->depth[i] = tmp;
|
|
}
|
|
|
|
// Lecture du type de chaque couche
|
|
uint32_t type_couche[size-1];
|
|
|
|
for (int i=0; i < (int)size-1; i++) {
|
|
fread(&tmp, sizeof(tmp), 1, ptr);
|
|
type_couche[i] = tmp;
|
|
}
|
|
|
|
// Lecture de chaque couche
|
|
network->kernel = (Kernel**)nalloc(sizeof(Kernel*)*(size-1));
|
|
|
|
for (int i=0; i < (int)size-1; i++) {
|
|
network->kernel[i] = read_kernel(type_couche[i], network->width[i+1], ptr);
|
|
}
|
|
|
|
network->input = (float****)nalloc(sizeof(float***)*size);
|
|
for (int i=0; i < (int)size; i++) { // input[size][couche->depth][couche->dim][couche->dim]
|
|
network->input[i] = (float***)nalloc(sizeof(float**)*network->depth[i]);
|
|
for (int j=0; j < network->depth[i]; j++) {
|
|
network->input[i][j] = (float**)nalloc(sizeof(float*)*network->width[i]);
|
|
for (int k=0; k < network->width[i]; k++) {
|
|
network->input[i][j][k] = (float*)nalloc(sizeof(float)*network->width[i]);
|
|
for (int l=0; l < network->width[i]; l++) {
|
|
network->input[i][j][k][l] = 0.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
network->input_z = (float****)nalloc(sizeof(float***)*size);
|
|
for (int i=0; i < (int)size; i++) { // input[size][couche->depth][couche->dim][couche->dim]
|
|
network->input_z[i] = (float***)nalloc(sizeof(float**)*network->depth[i]);
|
|
for (int j=0; j < network->depth[i]; j++) {
|
|
network->input_z[i][j] = (float**)nalloc(sizeof(float*)*network->width[i]);
|
|
for (int k=0; k < network->width[i]; k++) {
|
|
network->input_z[i][j][k] = (float*)nalloc(sizeof(float)*network->width[i]);
|
|
for (int l=0; l < network->width[i]; l++) {
|
|
network->input_z[i][j][k][l] = 0.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fclose(ptr);
|
|
return network;
|
|
}
|
|
|
|
Kernel* read_kernel(int type_couche, int output_dim, FILE* ptr) {
|
|
Kernel* kernel = (Kernel*)nalloc(sizeof(Kernel));
|
|
if (type_couche == 0) { // Cas du CNN
|
|
// Lecture du "Pré-corps"
|
|
kernel->cnn = (Kernel_cnn*)nalloc(sizeof(Kernel_cnn));
|
|
kernel->nn = NULL;
|
|
uint32_t buffer[5];
|
|
fread(&buffer, sizeof(buffer), 1, ptr);
|
|
|
|
kernel->activation = buffer[0];
|
|
kernel->linearisation = buffer[1];
|
|
kernel->cnn->k_size = buffer[2];
|
|
kernel->cnn->rows = buffer[3];
|
|
kernel->cnn->columns = buffer[4];
|
|
|
|
// Lecture du corps
|
|
Kernel_cnn* cnn = kernel->cnn;
|
|
float tmp;
|
|
|
|
cnn->bias = (float***)nalloc(sizeof(float**)*cnn->columns);
|
|
cnn->d_bias = (float***)nalloc(sizeof(float**)*cnn->columns);
|
|
for (int i=0; i < cnn->columns; i++) {
|
|
cnn->bias[i] = (float**)nalloc(sizeof(float*)*output_dim);
|
|
cnn->d_bias[i] = (float**)nalloc(sizeof(float*)*output_dim);
|
|
for (int j=0; j < output_dim; j++) {
|
|
cnn->bias[i][j] = (float*)nalloc(sizeof(float)*output_dim);
|
|
cnn->d_bias[i][j] = (float*)nalloc(sizeof(float)*output_dim);
|
|
for (int k=0; k < output_dim; k++) {
|
|
fread(&tmp, sizeof(tmp), 1, ptr);
|
|
cnn->bias[i][j][k] = tmp;
|
|
cnn->d_bias[i][j][k] = 0.;
|
|
}
|
|
}
|
|
}
|
|
|
|
cnn->w = (float****)nalloc(sizeof(float***)*cnn->rows);
|
|
cnn->d_w = (float****)nalloc(sizeof(float***)*cnn->rows);
|
|
for (int i=0; i < cnn->rows; i++) {
|
|
cnn->w[i] = (float***)nalloc(sizeof(float**)*cnn->columns);
|
|
cnn->d_w[i] = (float***)nalloc(sizeof(float**)*cnn->columns);
|
|
for (int j=0; j < cnn->columns; j++) {
|
|
cnn->w[i][j] = (float**)nalloc(sizeof(float*)*cnn->k_size);
|
|
cnn->d_w[i][j] = (float**)nalloc(sizeof(float*)*cnn->k_size);
|
|
for (int k=0; k < cnn->k_size; k++) {
|
|
cnn->w[i][j][k] = (float*)nalloc(sizeof(float)*cnn->k_size);
|
|
cnn->d_w[i][j][k] = (float*)nalloc(sizeof(float)*cnn->k_size);
|
|
for (int l=0; l < cnn->k_size; l++) {
|
|
fread(&tmp, sizeof(tmp), 1, ptr);
|
|
cnn->w[i][j][k][l] = tmp;
|
|
cnn->d_w[i][j][k][l] = 0.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else if (type_couche == 1) { // Cas du NN
|
|
// Lecture du "Pré-corps"
|
|
kernel->nn = (Kernel_nn*)nalloc(sizeof(Kernel_nn));
|
|
kernel->cnn = NULL;
|
|
uint32_t buffer[4];
|
|
fread(&buffer, sizeof(buffer), 1, ptr);
|
|
|
|
kernel->activation = buffer[0];
|
|
kernel->linearisation = buffer[1];
|
|
kernel->nn->input_units = buffer[2];
|
|
kernel->nn->output_units = buffer[3];
|
|
|
|
// Lecture du corps
|
|
Kernel_nn* nn = kernel->nn;
|
|
float tmp;
|
|
|
|
nn->bias = (float*)nalloc(sizeof(float)*nn->output_units);
|
|
nn->d_bias = (float*)nalloc(sizeof(float)*nn->output_units);
|
|
for (int i=0; i < nn->output_units; i++) {
|
|
fread(&tmp, sizeof(tmp), 1, ptr);
|
|
nn->bias[i] = tmp;
|
|
nn->d_bias[i] = 0.;
|
|
}
|
|
|
|
nn->weights = (float**)nalloc(sizeof(float*)*nn->input_units);
|
|
nn->d_weights = (float**)nalloc(sizeof(float*)*nn->input_units);
|
|
for (int i=0; i < nn->input_units; i++) {
|
|
nn->weights[i] = (float*)nalloc(sizeof(float)*nn->output_units);
|
|
nn->d_weights[i] = (float*)nalloc(sizeof(float)*nn->output_units);
|
|
for (int j=0; j < nn->output_units; j++) {
|
|
fread(&tmp, sizeof(tmp), 1, ptr);
|
|
nn->weights[i][j] = tmp;
|
|
nn->d_weights[i][j] = 0.;
|
|
}
|
|
}
|
|
} else if (type_couche == 2) { // Cas du Pooling Layer
|
|
uint32_t pooling, linearisation;
|
|
fread(&linearisation, sizeof(linearisation), 1, ptr);
|
|
fread(&pooling, sizeof(pooling), 1, ptr);
|
|
|
|
kernel->cnn = NULL;
|
|
kernel->nn = NULL;
|
|
kernel->activation = IDENTITY;
|
|
kernel->pooling = pooling;
|
|
kernel->linearisation = linearisation;
|
|
}
|
|
return kernel;
|
|
} |