mirror of
https://github.com/augustin64/projet-tipe
synced 2025-03-13 14:25:21 +01:00
150 lines
3.8 KiB
C
150 lines
3.8 KiB
C
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <float.h>
|
|
|
|
#include "include/function.h"
|
|
|
|
|
|
float max_float(float a, float b) {
|
|
return a < b ? b:a;
|
|
}
|
|
|
|
float identity(float x) {
|
|
return x;
|
|
}
|
|
|
|
float identity_derivative(float x) {
|
|
(void)x;
|
|
return 1;
|
|
}
|
|
|
|
float sigmoid(float x) {
|
|
return 1/(1 + exp(-x));
|
|
}
|
|
|
|
float sigmoid_derivative(float x) {
|
|
float tmp = exp(-x);
|
|
return tmp/((1+tmp)*(1+tmp));
|
|
}
|
|
|
|
float relu(float x) {
|
|
return max_float(0, x);
|
|
}
|
|
|
|
float relu_derivative(float x) {
|
|
if (x > 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
float tanh_(float x) {
|
|
return tanh(x);
|
|
}
|
|
|
|
float tanh_derivative(float x) {
|
|
float a = tanh(x);
|
|
return 1 - a*a;
|
|
}
|
|
|
|
void apply_softmax_input(float ***input, int depth, int rows, int columns) {
|
|
float m = FLT_MIN;
|
|
float sum=0;
|
|
for (int i=0; i < depth; i++) {
|
|
for (int j=0; j < rows; j++) {
|
|
for (int k=0; k < columns; k++) {
|
|
m = max_float(m, input[i][j][k]);
|
|
}
|
|
}
|
|
}
|
|
for (int i=0; i < depth; i++) {
|
|
for (int j=0; j < rows; j++) {
|
|
for (int k=0; k < columns; k++) {
|
|
input[i][j][k] = exp(m-input[i][j][k]);
|
|
sum += input[i][j][k];
|
|
}
|
|
}
|
|
}
|
|
for (int i=0; i < depth; i++) {
|
|
for (int j=0; j < rows; j++) {
|
|
for (int k=0; k < columns; k++) {
|
|
input[i][j][k] = input[i][j][k]/sum;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void apply_function_input(float (*f)(float), float*** input, int depth, int rows, int columns) {
|
|
for (int i=0; i < depth; i++) {
|
|
for (int j=0; j < rows; j++) {
|
|
for (int k=0; k < columns; k++) {
|
|
input[i][j][k] = (*f)(input[i][j][k]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void choose_apply_function_matrix(int activation, float*** input, int depth, int dim) {
|
|
if (activation == RELU) {
|
|
apply_function_input(relu, input, depth, dim, dim);
|
|
} else if (activation == SIGMOID) {
|
|
apply_function_input(sigmoid, input, depth, dim, dim);
|
|
} else if (activation == SOFTMAX) {
|
|
apply_softmax_input(input, depth, dim, dim);
|
|
} else if (activation == TANH) {
|
|
apply_function_input(tanh_, input, depth, dim, dim);
|
|
} else {
|
|
printf("Erreur, fonction d'activation inconnue (choose_apply_function_matrix): %d\n", activation);
|
|
}
|
|
}
|
|
|
|
void choose_apply_function_vector(int activation, float*** input, int dim) {
|
|
if (activation == RELU) {
|
|
apply_function_input(relu, input, 1, 1, dim);
|
|
} else if (activation == SIGMOID) {
|
|
apply_function_input(sigmoid, input, 1, 1, dim);
|
|
} else if (activation == SOFTMAX) {
|
|
apply_softmax_input(input, 1, 1, dim);
|
|
} else if (activation == TANH) {
|
|
apply_function_input(tanh_, input, 1, 1, dim);
|
|
} else {
|
|
printf("Erreur, fonction d'activation inconnue (choose_apply_function_vector): %d\n", activation);
|
|
}
|
|
}
|
|
|
|
ptr get_function_activation(int activation) {
|
|
if (activation == RELU) {
|
|
return &relu;
|
|
}
|
|
if (activation == -RELU) {
|
|
return &relu_derivative;
|
|
}
|
|
if (activation == -IDENTITY) {
|
|
return &identity_derivative;
|
|
}
|
|
if (activation == IDENTITY) {
|
|
return &identity;
|
|
}
|
|
if (activation == SIGMOID) {
|
|
return &sigmoid;
|
|
}
|
|
if (activation == -SIGMOID) {
|
|
return &sigmoid_derivative;
|
|
}
|
|
if (activation == SOFTMAX) {
|
|
printf("Erreur, impossible de renvoyer la fonction softmax\n");
|
|
return NULL;
|
|
}
|
|
if (activation == -SOFTMAX) {
|
|
printf("Erreur, impossible de renvoyer la dérivée de la fonction softmax\n");
|
|
return NULL;
|
|
}
|
|
if (activation == TANH) {
|
|
return &tanh_;
|
|
}
|
|
if (activation == -TANH) {
|
|
return &tanh_derivative;
|
|
}
|
|
printf("Erreur, fonction d'activation inconnue (choose_apply_function_vector): %d\n", activation);
|
|
return NULL;
|
|
}
|