tipe/src/cnn/function.c

327 lines
8.5 KiB
C

#include <stdio.h>
#include <math.h>
#include <float.h>
#include "../common/include/colors.h"
#include "../common/include/utils.h"
#include "include/config.h"
#include "include/function.h"
//* Identity
#ifdef __CUDACC__
__host__ __device__
#endif
float identity(float x) {
return x;
}
#ifdef __CUDACC__
__host__ __device__
#endif
float identity_derivative(float x) {
(void)x;
return 1;
}
//* Sigmoid
#ifdef __CUDACC__
__host__ __device__
#endif
float sigmoid(float x) {
return 1/(1 + exp(-x));
}
#ifdef __CUDACC__
__host__ __device__
#endif
float sigmoid_derivative(float x) {
float tmp = exp(-x);
return tmp/((1+tmp)*(1+tmp));
}
//* RELU
#ifdef __CUDACC__
__host__ __device__
#endif
float relu(float x) {
return fmaxf(0, fminf(x, RELU_CLIP_VALUE));
}
#ifdef __CUDACC__
__host__ __device__
#endif
float relu_derivative(float x) {
if (x > 0)
return 1;
return 0;
}
//* Leaky RELU
#ifdef __CUDACC__
__host__ __device__
#endif
float leaky_relu(float x) {
if (x>0)
return fminf(x, RELU_CLIP_VALUE);
return x*LEAKER;
}
#ifdef __CUDACC__
__host__ __device__
#endif
float leaky_relu_derivative(float x) {
if (x > 0)
return 1;
return LEAKER;
}
//* Tanh
#ifdef __CUDACC__
__host__ __device__
#endif
float tanh_(float x) {
return tanh(x);
}
#ifdef __CUDACC__
__host__ __device__
#endif
float tanh_derivative(float x) {
float a = tanh(x);
return 1 - a*a;
}
#ifdef __CUDACC__
/*
* Définition des pointeurs de fonctions pour CUDA
* voir https://stackoverflow.com/a/15646771
*/
__device__ funcPtr ptr_sigmoid = sigmoid;
__device__ funcPtr ptr_relu = relu;
__device__ funcPtr ptr_leaky_relu = leaky_relu;
__device__ funcPtr ptr_tanh = tanh_;
__device__ funcPtr ptr_identity = identity;
__device__ funcPtr ptr_identity_derivative = identity_derivative;
__device__ funcPtr ptr_sigmoid_derivative = sigmoid_derivative;
__device__ funcPtr ptr_relu_derivative = relu_derivative;
__device__ funcPtr ptr_leaky_relu_derivative = leaky_relu_derivative;
__device__ funcPtr ptr_tanh_derivative = tanh_derivative;
#endif
void apply_softmax_input(float ***input, int depth, int rows, int columns) {
float m = -FLT_MAX;
float sum=0;
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
m = fmaxf(m, input[i][j][k]);
}
}
}
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
input[i][j][k] = exp(m-input[i][j][k]);
sum += input[i][j][k];
}
}
}
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
input[i][j][k] = input[i][j][k]/sum;
}
}
}
}
/*
* Apply function on input
*/
#ifdef __CUDACC__
__global__ void apply_function_input_kernel(funcPtr f, float*** input, int depth, int rows, int columns) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < depth
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < rows
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < columns
if (idx >= depth || idy >= rows || idz >= columns) {
return;
}
input[idx][idy][idz] = (*f)(input[idx][idy][idz]);
}
void apply_function_input_device(int activation, float*** input, int depth, int rows, int columns) {
// Make computation
dim3 gridSize(i_div_up(depth, BLOCKSIZE_x), i_div_up(rows, BLOCKSIZE_y), i_div_up(columns, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
funcPtr activation_function = get_activation_function_cuda(activation);
apply_function_input_kernel<<<gridSize, blockSize>>>(activation_function, input, depth, rows, columns);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
void apply_function_input_cpu(int activation, float*** input, int depth, int rows, int columns) {
funcPtr f = get_activation_function(activation);
for (int i=0; i < depth; i++) {
for (int j=0; j < rows; j++) {
for (int k=0; k < columns; k++) {
input[i][j][k] = (*f)(input[i][j][k]);
}
}
}
}
#ifdef __CUDACC__
extern "C"
#endif
void apply_function_input(int activation, float*** input, int depth, int rows, int columns) {
#ifndef __CUDACC__
apply_function_input_cpu(activation, input, depth, rows, columns);
#else
apply_function_input_device(activation, input, depth, rows, columns);
#endif
}
void apply_function_to_matrix(int activation, float*** input, int depth, int dim) {
if (activation == SOFTMAX) {
return apply_softmax_input(input, depth, dim, dim);
}
if (activation >= 1) { // Exclude negative values (derivative)
return apply_function_input(activation, input, depth, dim, dim);
}
printf_error((char*)"fonction d'activation inconnue (apply_function_to_matrix): ");
printf("%d\n", activation);
}
void apply_function_to_vector(int activation, float*** input, int dim) {
if (activation == SOFTMAX) {
return apply_softmax_input(input, 1, 1, dim);
}
if (activation >= 1) { // Exclude negative values (derivative)
return apply_function_input(activation, input, 1, 1, dim);
}
printf_error((char*)"fonction d'activation inconnue (apply_function_to_vector): ");
printf("%d\n", activation);
}
funcPtr get_activation_function(int activation) {
switch (activation) {
case RELU:
return &relu;
case -RELU:
return &relu_derivative;
case IDENTITY:
return &identity;
case -IDENTITY:
return &identity_derivative;
case SIGMOID:
return &sigmoid;
case -SIGMOID:
return &sigmoid_derivative;
case LEAKY_RELU:
return &leaky_relu;
case -LEAKY_RELU:
return &leaky_relu_derivative;
case TANH:
return &tanh_;
case -TANH:
return &tanh_derivative;
case SOFTMAX:
printf_error((char*)"impossible de renvoyer la fonction softmax\n");
return NULL;
case -SOFTMAX:
printf_error((char*)"impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
default:
printf_error((char*)"fonction d'activation inconnue (get_activation_function_cuda): ");
printf("%d\n", activation);
return NULL;
}
}
#ifdef __CUDACC__
extern "C"
funcPtr get_activation_function_cuda(int activation) {
funcPtr host_function;
switch (activation) {
case RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_relu, sizeof(funcPtr)));
break;
case -RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_relu_derivative, sizeof(funcPtr)));
break;
case IDENTITY:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_identity, sizeof(funcPtr)));
break;
case -IDENTITY:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_identity_derivative, sizeof(funcPtr)));
break;
case SIGMOID:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_sigmoid, sizeof(funcPtr)));
break;
case -SIGMOID:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_sigmoid_derivative, sizeof(funcPtr)));
break;
case LEAKY_RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_leaky_relu, sizeof(funcPtr)));
break;
case -LEAKY_RELU:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_leaky_relu_derivative, sizeof(funcPtr)));
break;
case TANH:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_tanh, sizeof(funcPtr)));
break;
case -TANH:
gpuErrchk( cudaMemcpyFromSymbol(&host_function, ptr_tanh_derivative, sizeof(funcPtr)));
break;
case SOFTMAX:
printf_error((char*)"impossible de renvoyer la fonction softmax\n");
return NULL;
case -SOFTMAX:
printf_error((char*)"impossible de renvoyer la dérivée de la fonction softmax\n");
return NULL;
default:
printf_error((char*)"fonction d'activation inconnue (get_activation_function_cuda): ");
printf("%d\n", activation);
return NULL;
}
return host_function;
}
#endif