tipe/matrix_2d.c
2022-04-30 09:49:39 +02:00

508 lines
16 KiB
C

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
typedef struct Matrix {
int rows; // Nombre de lignes de la matrice
int columns; // Nombre de colonnes de la matrice
float** value; // Tableau 2d comportant les valeurs de matrice
} Matrix;
// Mis ici jusqu'à le rassemblement des fichiers
typedef struct Neuron{
float* weights; // Liste de tous les poids des arêtes sortants du neurone
float bias; // Caractérise le bias du neurone
float z; // Sauvegarde des calculs faits sur le neurone (programmation dynamique)
float *back_weights; // Changement des poids sortants lors de la backpropagation
float *last_back_weights; // Dernier changement de d_poid_sortants
float back_bias; // Changement du bias lors de la backpropagation
float last_back_bias; // Dernier changement de back_bias
} Neuron;
float exp_float(float a);
float max_float(float a, float b);
float min_float(float a, float b);
Matrix* create_matrix(int nb_rows, int nb_columns);
void uniformity_matrix(Matrix* m, float v);
void print_matrix(Matrix* m);
float number_from_matrix(Matrix* m);
float max_in_matrix(Matrix* m);
void free_matrix(Matrix* m);
void product_of_a_scalar_matrix(Matrix* m, float scalar);
void sum_of_a_scalar_matrix(Matrix* m, float scalar);
Matrix* new_copy_matrix(Matrix* m);
Matrix* apply_function_new_matrix(Matrix* m, float (*f)(float));
void apply_function_matrix(Matrix* m, float (*f)(float));
void transpose_matrix(Matrix* m);
void add_matrix(Matrix* m1, Matrix* m2);
Matrix* product_matrix(Matrix* m1, Matrix* m2);
void max_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
void min_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
void average_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
void valid_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
void full_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out);
void softmax_matrix(Matrix* m);
float quadratic_cost_matrix(Matrix* m, int i_number, int j_number);
void rotation_180_matrix(Matrix* m);
float exp_float(float a) {
/* Renvoie l'exponentiel d'un flotant '*/
return (float)exp(a);
}
float max_float(float a, float b) {
/* Renvoie le max entre les deux flotants */
return a>b?a:b;
}
float min_float(float a, float b) {
/* Renvoie le min entre les deux flotants */
return a<b?a:b;
}
Matrix* create_matrix(int nb_rows, int nb_columns) {
/* Créé une matrice en lui allouant de la mémoire */
Matrix* m = malloc(sizeof(Matrix));
m->rows = nb_rows;
m->columns = nb_columns;
m->value = malloc(sizeof(float*)*m->rows);
for (int i=0; i < m->rows; i++)
m->value[i] = malloc(sizeof(float)*m->columns);
return m;
}
void uniformity_matrix(Matrix* m, float v) {
/* Insère la même valeur partout dans la matrice */
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
m->value[i][j] = v;
}
}
}
void print_matrix(Matrix* m) {
/* Affiche la matrice */
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
if (j!=0)
printf(",");
printf("%f ", m->value[i][j]);
}
printf("\n");
}
}
float number_from_matrix(Matrix* m) {
/* Renvoie la somme des éléments de la matrice */
float tmp=0;
for (int i=0; i < m->rows ; i++) {
for (int j=0; j < m->columns; j++) {
tmp += m->value[i][j];
}
}
return tmp;
}
float max_in_matrix(Matrix* m) {
/* Renvoie l'élément maximal de la matrice */
float max_tmp = FLT_MIN;
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
max_tmp = max_float(max_tmp, m->value[i][j]);
}
}
return max_tmp;
}
void free_matrix(Matrix* m) {
/* Libère l'espace mémoire alloué à la matrice */
for (int i=0; i < m->rows; i++)
free(m->value[i]);
free(m->value);
}
void product_of_a_scalar_matrix(Matrix* m, float scalar) {
/* Multiplie la matrice par un scalaire */
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
m->value[i][j] *= scalar;
}
}
}
void sum_of_a_scalar_matrix(Matrix* m, float scalar) {
/* Ajoute un scalaire à la matrice */
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
m->value[i][j] += scalar;
}
}
}
Matrix* new_copy_matrix(Matrix* m) {
/* Renvoie une copie de la matrice */
Matrix* new_m = create_matrix(m->rows, m->columns);
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
new_m->value[i][j] = m->value[i][j];
}
}
return new_m;
}
void copy_matrix(Matrix* m1, Matrix* m2) {
/* Copie le contenu de la matrice m1 dans la matrice m2 */
if (m1->rows != m2->rows || m1->columns != m2->columns) {
printf("Erreur, copie dans de deux matrices dont les dimensions diffèrent");
return;
}
for (int i=0; i < m1->rows; i++) {
for (int j=0; j < m2->columns; j++) {
m2->value[i][j] = m1->value[i][j];
}
}
}
Matrix* apply_function_new_matrix(Matrix* m, float (*f)(float)) {
/* Renvoie une matrice avec une fonction appliquée
à tous les éléments de l'ancienne matrice */
Matrix* new_m = create_matrix(m->rows, m->columns);
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m ->columns; j++) {
new_m->value[i][j] = (*f)(m->value[i][j]);
}
}
return new_m;
}
void apply_function_matrix(Matrix* m, float (*f)(float)) {
/* Applique une fonction à tous les éléments de la matrice */
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m ->columns; j++) {
m->value[i][j] = (*f)(m->value[i][j]);
}
}
}
void transpose_matrix(Matrix* m) {
/* Transpose la matrice si c'est possible */
if (m->rows != m->columns) {
printf("Erreur, matrice non compatible avec la transposition");
return;
}
float cpt;
for (int i=0; i < m->rows; i++) {
for (int j=i+1; j < m->columns; j++) {
cpt = m->value[i][j];
m->value[i][j] = m->value[j][i];
m->value[j][i] = cpt;
}
}
}
void add_matrix(Matrix* m1, Matrix* m2) {
/* Ajoute la matrice m1 à la matrice m2 */
if (m1->rows != m2->rows || m1->columns != m2->columns) {
printf("Erreur, matrices non compatibles avec la somme");
return;
}
for (int i=0; i < m2->rows; i++) {
for (int j=0; j < m2->columns; j++) {
m2->value[i][j] += m1->value[i][j];
}
}
}
Matrix* product_matrix(Matrix* m1, Matrix* m2) {
/* Renvoie une nouvelle matrice produit (classique)
des deux matrices si les dimensions sont correctes*/
if (m1->columns != m2->rows) {
printf("Erreur, matrices non compatibles avec le produit");
return NULL;
}
float cpt;
Matrix* m = create_matrix(m1->rows, m2->columns);
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
cpt=0;
for (int k=0; k < m2->rows; k++) {
cpt += m1->value[i][j]* m2->value[k][j];
}
m->value[i][j] = cpt;
}
}
return m;
}
void max_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
/* Insère le résultat de max pooling avec un décalage
de (stride) pixels dans la matrice m_out */
if (m_in->columns < kernel->columns || m_in->rows < kernel->rows) {
printf("Erreur, kernel plus grand que la matrice dans max pooling");
return;
}
if (((m_in->columns - kernel->columns)/stride)+1 != m_out->columns || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows) {
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans max pooling");
return;
}
int i, j, a ,b;
float tmp;
for (i=0; i < m_out->rows; i++) {
for (j=0; j < m_out->columns; j++) {
tmp = FLT_MIN;
for (a=0; a < kernel->rows; a++) {
for (b=0; b < kernel->columns; b++) {
tmp = max_float(tmp, m_in->value[i*stride +a][j*stride +b]);
}
}
m_out->value[i][j] = tmp;
}
}
}
void min_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
/* Insère le résultat de min pooling avec un décalage
de (stride) pixels dans la matrice m_out */
if (m_in->columns < kernel->columns || m_in->rows < kernel->rows) {
printf("Erreur, kernel plus grand que la matrice dans min pooling");
return;
}
if (((m_in->columns - kernel->columns)/stride)+1 != m_out->columns || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows) {
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans min pooling");
return;
}
int i, j, a ,b;
float tmp;
for (i=0; i < m_out->rows; i++) {
for (j=0; j < m_out->columns; j++) {
tmp = FLT_MAX;
for (a=0; a < kernel->rows; a++) {
for (b=0; b < kernel->columns; b++) {
tmp = min_float(tmp, m_in->value[i*stride +a][j*stride +b]);
}
}
m_out->value[i][j] = tmp;
}
}
}
void average_pooling_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
/* Insère le résultat de max pooling avec un décalage
de (stride) pixels dans la matrice m_out */
if (m_in->columns < kernel->columns || m_in->rows < kernel->rows) {
printf("Erreur, kernel plus grand que la matrice dans average pooling");
return;
}
if (((m_in->columns - kernel->columns)/stride)+1 != m_out->columns || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows) {
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans average pooling");
return;
}
int i, j, a, b, nb= kernel->rows*kernel->columns;
for (i=0; i < m_out->rows; i++) {
for (j=0; j < m_out->columns; j++) {
m_out->value[i][j] = 0;
for (a=0; a < kernel->rows; a++) {
for (b=0; b < kernel->columns; b++) {
m_out->value[i][j] += m_in->value[i*stride +a][j*stride +b];
}
}
m_out->value[i][j] = m_out->value[i][j]/nb;
}
}
}
void valid_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
/* Ajoute, la cross-correlation valide de m_in et
kernel avec un décalage de stride, dans m_out */
if (m_in->columns < kernel->columns || m_in->rows < kernel->rows) {
printf("Erreur, kernel plus grand que la matrice dans valid cross-correlation");
return;
}
if (((m_in->columns - kernel->columns)/stride)+1 != m_out->columns || ((m_in->rows - kernel->rows)/stride)+1 != m_out->rows) {
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans valid cross-correlation");
return;
}
int i, j, a, b;
for (i=0; i < m_out->rows; i++) {
for (j=0; j < m_out->columns; j++) {
for (a=0; a < kernel->rows; a++) {
for (b=0; b < kernel->columns; b++) {
m_out->value[i][j] += m_in->value[i*stride +a][j*stride +b]*kernel->value[a][b];
}
}
}
}
}
void full_cross_correlation_matrix(Matrix* m_in, Matrix* kernel, int stride, Matrix* m_out) {
/* Ajoute, la cross-correlation entière de m_in et
kernel avec un décalage de stride, dans m_out */
int rows_k = kernel->rows-1;
int columns_k = kernel->columns-1;
if (m_in->columns < kernel->columns || m_in->rows < kernel->rows) {
printf("Erreur, kernel plus grand que la matrice dans full cross-correlation");
return;
}
if ((m_in->columns + 2*columns_k)/stride != m_out->columns || (m_in->rows + 2*rows_k)/stride != m_out->rows) {
printf("Erreur, matrice et kernel non compatibles avec le décalage ou la matrice sortante dans full cross-correlation");
return;
}
int i, j, a, b, new_i, new_j;
for (i=-rows_k; i < (m_out->rows + kernel->rows -1); i++) {
for (j=-columns_k; j < (m_out->columns + kernel->columns -1); j++) {
m_out->value[i+rows_k][j+columns_k] = 0;
for (a=0; a < kernel->rows; a++) {
for (b=0; b < kernel->columns; b++) {
new_i = i*stride +a;
new_j = j*stride +b;
if (new_i >= 0 || new_i < m_in->rows || new_j >= 0 || new_j < m_in->columns)
m_out->value[i+rows_k][j+columns_k] += m_in->value[i*stride +a][j*stride +b]*kernel->value[a][b];
}
}
}
}
}
void softmax_matrix(Matrix* m) {
/* Applique la fonction softmax sur la matrice en changeant ses valeurs */
float max = max_in_matrix(m);
sum_of_a_scalar_matrix(m, (-1)*max);
apply_function_matrix(m, exp_float);
float sum = number_from_matrix(m);
sum = 1/sum;
product_of_a_scalar_matrix(m, sum);
}
float quadratic_cost_matrix(Matrix* m, int i_number, int j_number) {
/* Renvoie l'erreur de la matrice où les valeurs sont des probabailités */
float loss = 0;
for (int i=0; i < m->rows; i++) {
for (int j=0; j < m->columns; j++) {
if (i==i_number && j==j_number)
loss += (1-m->value[i][j])*(1-m->value[i][j]);
else
loss += m->value[i][j]*m->value[i][j];
}
}
return loss;
}
void rotation_180_matrix(Matrix* m) {
/* Modifie la matrice en pivotant ses valeurs de 180° */
if (m->rows != m-> columns) {
printf("Erreur, une matrice non carrée ne peut pas être retourner");
return;
}
float tmp;
int half_rows = m->rows/2;
int max_r = m->rows-1;
int max_c = m->columns-1;
for (int i=0; i < m->rows; i++) {
for (int j=i; j < m->columns; j++) {
if (i!=j || i>=half_rows) {
tmp = m->value[i][j];
m->value[i][j] = m->value[max_r-i][max_c-j];
m->value[max_r-i][max_c-j] = tmp;
}
}
}
}
void valid__cross_correlation_step_forward(Matrix** layer_input, Matrix*** layer_kernel, Matrix** layer_bias, Matrix** layer_output, int len_layer, int depth_kernel, int stride) {
/* Effectue une étape de la forward-propagation
à l'aide d'une cross-correlation valide */
for (int i=0; i < depth_kernel; i++) {
copy_matrix(layer_bias[i], layer_output[i]);
for (int j=0; j < len_layer; j++) {
valid_cross_correlation_matrix(layer_input[j], layer_kernel[i][j], stride, layer_output[j]);
}
}
}
void max_pooling_step_forward(Matrix** layer_input, Matrix*** layer_kernel, Matrix** layer_bias, Matrix** layer_output, int len_layer, int depth_kernel, int stride) {
/* Effectue une étape de la forward-propagation
à l'aide d'un max_pooling */
for (int i=0; i < depth_kernel; i++) {
copy_matrix(layer_bias[i], layer_output[i]);
for (int j=0; j < len_layer; j++) {
max_pooling_matrix(layer_input[j], layer_kernel[i][j], stride, layer_output[j]);
}
}
}
void average_pooling_step_forward(Matrix** layer_input, Matrix*** layer_kernel, Matrix** layer_bias, Matrix** layer_output, int len_layer, int depth_kernel, int stride) {
/* Effectue une étape de la forward-propagation
à l'aide d'un average_pooling */
for (int i=0; i < depth_kernel; i++) {
copy_matrix(layer_bias[i], layer_output[i]);
for (int j=0; j < len_layer; j++) {
average_pooling_matrix(layer_input[j], layer_kernel[i][j], stride, layer_output[j]);
}
}
}
void reshape_step_forward(Matrix** layer_input, Neuron** output, int len_layer) {
/* Effectue une étape de la forward-propagation
en redimensionnant la matrice */
int cpt = 0;
for (int i=0; i < len_layer; i++) {
for (int j=0; j < layer_input[i]->rows; j++) {
for (int k=0; k < layer_input[i]->columns; k++) {
output[cpt]->z = layer_input[i]->value[j][k];
cpt++;
}
}
}
}
int main() {
Matrix* m = create_matrix(2, 2);
uniformity_matrix(m, 1);
print_matrix(m);
free_matrix(m);
return 0;
}