mirror of
https://github.com/augustin64/projet-tipe
synced 2025-03-13 14:25:21 +01:00
384 lines
13 KiB
C
384 lines
13 KiB
C
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
|
|
#include "include/neuron.h"
|
|
#include "include/neural_network.h"
|
|
|
|
|
|
|
|
#ifndef __CUDACC__
|
|
// The functions and macros below are already defined when using NVCC
|
|
#define INT_MIN -2147483648
|
|
|
|
float max(float a, float b){
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
#endif
|
|
|
|
bool drop(float prob) {
|
|
return (rand() % 100) > 100*prob;
|
|
}
|
|
|
|
float sigmoid(float x){
|
|
return 1/(1 + exp(-x));
|
|
}
|
|
|
|
float sigmoid_derivative(float x){
|
|
float tmp = exp(-x);
|
|
return tmp/((1+tmp)*(1+tmp));
|
|
}
|
|
|
|
float leaky_ReLU(float x){
|
|
if (x > 0)
|
|
return x;
|
|
return COEFF_LEAKY_RELU;
|
|
}
|
|
|
|
float leaky_ReLU_derivative(float x){
|
|
if (x > 0)
|
|
return 1;
|
|
return COEFF_LEAKY_RELU;
|
|
}
|
|
|
|
void network_creation(Network* network, int* neurons_per_layer, int nb_layers) {
|
|
Layer* layer;
|
|
|
|
network->nb_layers = nb_layers;
|
|
network->layers = (Layer**)malloc(sizeof(Layer*)*nb_layers);
|
|
|
|
for (int i=0; i < nb_layers; i++) {
|
|
network->layers[i] = (Layer*)malloc(sizeof(Layer));
|
|
layer = network->layers[i];
|
|
layer->nb_neurons = neurons_per_layer[i];
|
|
layer->neurons = (Neuron**)malloc(sizeof(Neuron*)*network->layers[i]->nb_neurons);
|
|
|
|
for (int j=0; j < layer->nb_neurons; j++) {
|
|
layer->neurons[j] = (Neuron*)malloc(sizeof(Neuron));
|
|
|
|
if (i != network->nb_layers-1) { // On exclut la dernière couche dont les neurones ne contiennent pas de poids sortants
|
|
layer->neurons[j]->weights = (float*)malloc(sizeof(float)*neurons_per_layer[i+1]);
|
|
layer->neurons[j]->back_weights = (float*)malloc(sizeof(float)*neurons_per_layer[i+1]);
|
|
layer->neurons[j]->last_back_weights = (float*)malloc(sizeof(float)*neurons_per_layer[i+1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void deletion_of_network(Network* network) {
|
|
Layer* layer;
|
|
Neuron* neuron;
|
|
|
|
for (int i=0; i < network->nb_layers; i++) {
|
|
layer = network->layers[i];
|
|
|
|
for (int j=0; j < network->layers[i]->nb_neurons; j++) {
|
|
neuron = layer->neurons[j];
|
|
if (i != network->nb_layers-1) { // On exclut la dernière couche dont les neurones ne contiennent pas de poids sortants
|
|
free(neuron->weights);
|
|
free(neuron->back_weights);
|
|
free(neuron->last_back_weights);
|
|
}
|
|
free(neuron);
|
|
}
|
|
free(layer->neurons);
|
|
free(network->layers[i]);
|
|
}
|
|
free(network->layers);
|
|
free(network);
|
|
}
|
|
|
|
|
|
|
|
|
|
void forward_propagation(Network* network, bool is_training) {
|
|
Layer* layer; // Couche actuelle
|
|
Layer* pre_layer; // Couche précédente
|
|
Neuron* neuron;
|
|
float sum;
|
|
float max_z = INT_MIN;
|
|
|
|
for (int i=1; i < network->nb_layers; i++) { // La première couche contient déjà des valeurs
|
|
sum = 0;
|
|
max_z = INT_MIN;
|
|
layer = network->layers[i];
|
|
pre_layer = network->layers[i-1];
|
|
|
|
for (int j=0; j < layer->nb_neurons; j++) {
|
|
neuron = layer->neurons[j];
|
|
neuron->z = neuron->bias;
|
|
|
|
for (int k=0; k < pre_layer->nb_neurons; k++) {
|
|
neuron->z += pre_layer->neurons[k]->z * pre_layer->neurons[k]->weights[j];
|
|
}
|
|
|
|
if (i < network->nb_layers-1) {
|
|
if (!is_training) {
|
|
if (j == 0) {
|
|
neuron->z = ENTRY_DROPOUT*leaky_ReLU(neuron->z);
|
|
} else {
|
|
neuron->z = DROPOUT*leaky_ReLU(neuron->z);
|
|
}
|
|
} else if (!drop(DROPOUT)) {
|
|
neuron->z = leaky_ReLU(neuron->z);
|
|
} else {
|
|
neuron->z = 0.;
|
|
}
|
|
|
|
} else { // Softmax seulement pour la dernière couche
|
|
max_z = max(max_z, neuron->z);
|
|
}
|
|
}
|
|
}
|
|
layer = network->layers[network->nb_layers-1];
|
|
int size_last_layer = layer->nb_neurons;
|
|
|
|
for (int j=0; j < size_last_layer; j++) {
|
|
neuron = layer->neurons[j];
|
|
neuron->z = exp(neuron->z - max_z);
|
|
sum += neuron->z;
|
|
}
|
|
for (int j=0; j < size_last_layer; j++) {
|
|
neuron = layer->neurons[j];
|
|
neuron->z = neuron->z / sum;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
int* desired_output_creation(Network* network, int wanted_number) {
|
|
int nb_neurons = network->layers[network->nb_layers-1]->nb_neurons;
|
|
|
|
int* desired_output = (int*)malloc(sizeof(int)*nb_neurons);
|
|
|
|
for (int i=0; i < nb_neurons; i++) // On initialise toutes les sorties à 0 par défaut
|
|
desired_output[i] = 0;
|
|
desired_output[wanted_number] = 1; // Seule la sortie voulue vaut 1
|
|
return desired_output;
|
|
}
|
|
|
|
|
|
|
|
void backward_propagation(Network* network, int* desired_output) {
|
|
Neuron* neuron;
|
|
Neuron* neuron2;
|
|
float changes;
|
|
float tmp;
|
|
|
|
int i = network->nb_layers-2;
|
|
int neurons_nb = network->layers[i+1]->nb_neurons;
|
|
for (int j=0; j < network->layers[i+1]->nb_neurons; j++) { // Dernière couche en première
|
|
neuron = network->layers[i+1]->neurons[j];
|
|
tmp = (desired_output[j]==1) ? neuron->z - 1 : neuron->z;
|
|
for (int k=0; k < network->layers[i]->nb_neurons; k++) {
|
|
neuron2 = network->layers[i]->neurons[k];
|
|
neuron2->back_weights[j] += neuron2->z*tmp;
|
|
neuron2->last_back_weights[j] = neuron2->z*tmp;
|
|
}
|
|
neuron->last_back_bias = tmp;
|
|
neuron->back_bias += tmp;
|
|
}
|
|
for (i--; i >= 0; i--) { // Autres couches ensuite
|
|
neurons_nb = network->layers[i+1]->nb_neurons;
|
|
for (int j=0; j < neurons_nb; j++) {
|
|
neuron = network->layers[i+1]->neurons[j];
|
|
changes = 0;
|
|
for (int k=0; k < network->layers[i+2]->nb_neurons; k++) {
|
|
changes += (neuron->weights[k]*neuron->last_back_weights[k])/neurons_nb;
|
|
}
|
|
changes = changes*leaky_ReLU_derivative(neuron->z);
|
|
if (neuron->z != 0) {
|
|
neuron->back_bias += changes;
|
|
neuron->last_back_bias = changes;
|
|
}
|
|
for (int l=0; l < network->layers[i]->nb_neurons; l++){
|
|
neuron2 = network->layers[i]->neurons[l];
|
|
if (neuron->z != 0) {
|
|
neuron2->back_weights[j] += neuron2->weights[j]*changes;
|
|
neuron2->last_back_weights[j] = neuron2->weights[j]*changes;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void network_modification(Network* network, uint32_t nb_modifs) {
|
|
Neuron* neuron;
|
|
|
|
for (int i=0; i < network->nb_layers; i++) { // on exclut la dernière couche
|
|
for (int j=0; j < network->layers[i]->nb_neurons; j++) {
|
|
neuron = network->layers[i]->neurons[j];
|
|
if (neuron->bias != 0 && PRINT_BIAIS)
|
|
printf("C %d\tN %d\tb: %f \tDb: %f\n", i, j, neuron->bias, (LEARNING_RATE/nb_modifs) * neuron->back_bias);
|
|
neuron->bias -= (LEARNING_RATE/nb_modifs) * neuron->back_bias;
|
|
neuron->back_bias = 0;
|
|
|
|
if (neuron->bias > MAX_RESEAU)
|
|
neuron->bias = MAX_RESEAU;
|
|
else if (neuron->bias < -MAX_RESEAU)
|
|
neuron->bias = -MAX_RESEAU;
|
|
|
|
if (i != network->nb_layers-1) {
|
|
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
|
if (neuron->weights[k] != 0 && PRINT_POIDS)
|
|
printf("C %d\tN %d -> %d\tp: %f \tDp: %f\n", i, j, k, neuron->weights[k], (LEARNING_RATE/nb_modifs) * neuron->back_weights[k]);
|
|
neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * neuron->back_weights[k];
|
|
neuron->back_weights[k] = 0;
|
|
|
|
if (neuron->weights[k] > MAX_RESEAU) {
|
|
neuron->weights[k] = MAX_RESEAU;
|
|
printf("Erreur, max du réseau atteint");
|
|
}
|
|
else if (neuron->weights[k] < -MAX_RESEAU) {
|
|
neuron->weights[k] = -MAX_RESEAU;
|
|
printf("Erreur, min du réseau atteint");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
void network_initialisation(Network* network) {
|
|
Neuron* neuron;
|
|
double upper_bound;
|
|
double lower_bound;
|
|
double bound_gap;
|
|
|
|
int nb_layers_loop = network->nb_layers -1;
|
|
|
|
upper_bound = 1/sqrt((double)network->layers[nb_layers_loop]->nb_neurons);
|
|
lower_bound = -upper_bound;
|
|
bound_gap = upper_bound - lower_bound;
|
|
|
|
srand(time(0));
|
|
for (int i=0; i < nb_layers_loop; i++) { // On exclut la dernière couche
|
|
for (int j=0; j < network->layers[i]->nb_neurons; j++) {
|
|
|
|
neuron = network->layers[i]->neurons[j];
|
|
|
|
if (i!=nb_layers_loop) {
|
|
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
|
neuron->weights[k] = lower_bound + RAND_DOUBLE()*bound_gap;
|
|
neuron->back_weights[k] = 0;
|
|
neuron->last_back_weights[k] = 0;
|
|
}
|
|
}
|
|
if (i > 0) { // On exclut la première couche
|
|
neuron->bias = lower_bound + RAND_DOUBLE()*bound_gap;
|
|
neuron->back_bias = 0;
|
|
neuron->last_back_bias = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void patch_network(Network* network, Network* delta, uint32_t nb_modifs) {
|
|
Neuron* neuron;
|
|
Neuron* dneuron;
|
|
|
|
for (int i=0; i < network->nb_layers; i++) {
|
|
for (int j=0; j < network->layers[i]->nb_neurons; j++) {
|
|
neuron = network->layers[i]->neurons[j];
|
|
dneuron = delta->layers[i]->neurons[j];
|
|
neuron->bias -= (LEARNING_RATE/nb_modifs) * dneuron->back_bias;
|
|
dneuron->back_bias = 0;
|
|
|
|
if (i != network->nb_layers-1) {
|
|
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
|
neuron->weights[k] -= (LEARNING_RATE/nb_modifs) * dneuron->back_weights[k]; // On modifie le poids du neurone à partir des données de la propagation en arrière
|
|
dneuron->back_weights[k] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void patch_delta(Network* network, Network* delta, uint32_t nb_modifs) {
|
|
Neuron* neuron;
|
|
Neuron* dneuron;
|
|
|
|
for (int i=0; i < network->nb_layers; i++) {
|
|
for (int j=0; j < network->layers[i]->nb_neurons; j++) {
|
|
neuron = network->layers[i]->neurons[j];
|
|
dneuron = delta->layers[i]->neurons[j];
|
|
neuron->back_bias += dneuron->back_bias/nb_modifs;
|
|
|
|
if (i != network->nb_layers-1) {
|
|
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
|
neuron->back_weights[k] += dneuron->back_weights[k]/nb_modifs;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Network* copy_network(Network* network) {
|
|
Network* network2 = (Network*)malloc(sizeof(Network));
|
|
Layer* layer;
|
|
Neuron* neuron1;
|
|
Neuron* neuron;
|
|
|
|
network2->nb_layers = network->nb_layers;
|
|
network2->layers = (Layer**)malloc(sizeof(Layer*)*network->nb_layers);
|
|
for (int i=0; i < network2->nb_layers; i++) {
|
|
layer = (Layer*)malloc(sizeof(Layer));
|
|
layer->nb_neurons = network->layers[i]->nb_neurons;
|
|
layer->neurons = (Neuron**)malloc(sizeof(Neuron*)*layer->nb_neurons);
|
|
for (int j=0; j < layer->nb_neurons; j++) {
|
|
neuron = (Neuron*)malloc(sizeof(Neuron));
|
|
|
|
neuron1 = network->layers[i]->neurons[j];
|
|
neuron->bias = neuron1->bias;
|
|
neuron->z = neuron1->z;
|
|
neuron->back_bias = neuron1->back_bias;
|
|
neuron->last_back_bias = neuron1->last_back_bias;
|
|
if (i != network2->nb_layers-1) {
|
|
(void)network2->layers[i+1]->nb_neurons;
|
|
neuron->weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons);
|
|
neuron->back_weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons);
|
|
neuron->last_back_weights = (float*)malloc(sizeof(float)*network->layers[i+1]->nb_neurons);
|
|
for (int k=0; k < network->layers[i+1]->nb_neurons; k++) {
|
|
neuron->weights[k] = neuron1->weights[k];
|
|
neuron->back_weights[k] = neuron1->back_weights[k];
|
|
neuron->last_back_weights[k] = neuron1->last_back_weights[k];
|
|
}
|
|
}
|
|
layer->neurons[j] = neuron;
|
|
}
|
|
network2->layers[i] = layer;
|
|
}
|
|
return network2;
|
|
}
|
|
|
|
|
|
float loss_computing(Network* network, int wanted_number){
|
|
float erreur = 0;
|
|
float neuron_value;
|
|
for (int i=0; i < network->nb_layers-1; i++) {
|
|
neuron_value = network->layers[network->nb_layers-1]->neurons[i]->z;
|
|
|
|
if (i == wanted_number) {
|
|
erreur += (1-neuron_value)*(1-neuron_value);
|
|
}
|
|
else {
|
|
erreur += neuron_value*neuron_value;
|
|
}
|
|
}
|
|
return erreur;
|
|
} |