tipe/src/cnn/convolution.c

96 lines
3.8 KiB
C

#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include "include/struct.h"
#include "../common/include/utils.h"
#include "include/config.h"
void make_convolution_cpu(Kernel_cnn* kernel, float*** input, float*** output, int output_width, int stride, int padding) {
// c'est le kernel de input
// input[kernel->rows][kernel_k_size + output_width-1][kernel_k_size + output_width-1]
// output[kernel->columns][output_width][output_width]
int k_columns = kernel->columns;
int k_rows = kernel->rows;
int max_move = kernel->k_size - padding;
int input_width = output_width*stride - 2*padding + kernel->k_size - stride;
float f;
for (int i=0; i < k_columns; i++) { // filtre
for (int j=0; j < output_width; j++) { // ligne de sortie
for (int k=0; k < output_width; k++) { // colonne de sortie
f = kernel->bias[i][j][k];
for (int a=0; a < k_rows; a++) { // Canal de couleur
for (int b=-padding; b < max_move; b++) { // ligne du filtre
for (int c=-padding; c < max_move; c++) { // colonne du filtre
int x = (stride*j+b);
int y = (stride*k+c);
if (not_outside(x, y, 0, input_width)) {
f += kernel->weights[a][i][b][c]*input[a][stride*j+b][stride*k+c];
}
}
}
}
output[i][j][k] = f;
}
}
}
}
#ifdef __CUDACC__
__global__ void make_convolution_kernel(float**** weights, float*** bias, int k_size, int rows, int columns, float*** input, float*** output, int output_width, int stride, int padding) {
// Équivalents respectifs de i, j et k dans la boucle effectuée par le cpu
int idx = threadIdx.x + blockDim.x*blockIdx.x; // < kernel->columns
int idy = threadIdx.y + blockDim.y*blockIdx.y; // < min(output_width, k_size)
int idz = threadIdx.z + blockDim.z*blockIdx.z; // < min(output_width, k_size)
int max_move = k_size - padding;
int input_width = output_width*stride - 2*padding + k_size - stride;
if (idx >= columns || idy >= output_width || idz >= output_width) {
return;
}
float f = bias[idx][idy][idz];
for (int a=0; a < rows; a++) {
for (int b=-padding; b < max_move; b++) {
for (int c=-padding; c < max_move; c++) {
int idy_2 = idy*stride+b;
int idz_2 = idz*stride+c;
if (not_outside(idy_2, idz_2, 0, input_width)) {
f += weights[a][idx][b][c]*input[a][idy_2][idz_2];
}
}
}
}
output[idx][idy][idz] = f;
}
void make_convolution_device(Kernel_cnn* kernel, float*** input, float*** output, int output_width, int stride, int padding) {
// Make computation
dim3 gridSize(i_div_up(kernel->columns, BLOCKSIZE_x), i_div_up(output_width, BLOCKSIZE_y), i_div_up(output_width, BLOCKSIZE_z));
dim3 blockSize(BLOCKSIZE_x, BLOCKSIZE_y, BLOCKSIZE_z);
// We can't pass `kernel` directly to the CUDA kernel function
// as it will create a 'misaligned adress' error
make_convolution_kernel<<<gridSize, blockSize>>>(kernel->weights, kernel->bias, kernel->k_size, kernel->rows, kernel->columns, input, output, output_width, stride, padding);
gpuErrchk( cudaPeekAtLastError() );
gpuErrchk( cudaDeviceSynchronize() );
}
#endif
#ifdef __CUDACC__
extern "C"
#endif
void make_convolution(Kernel_cnn* kernel, float*** input, float*** output, int output_width, int stride, int padding) {
#ifndef __CUDACC__
make_convolution_cpu(kernel, input, output, output_width, stride, padding);
#else
make_convolution_device(kernel, input, output, output_width, stride, padding);
#endif
}