#include #include #include "include/free.h" void free_a_cube_input_layer(Network* network, int pos, int depth, int dim) { for (int i=0; i < depth; i++) { for (int j=0; j < dim; j++) { free(network->input[pos][i][j]); free(network->input_z[pos][i][j]); } free(network->input[pos][i]); free(network->input_z[pos][i]); } free(network->input[pos]); free(network->input_z[pos]); } void free_a_line_input_layer(Network* network, int pos) { free(network->input[pos][0][0]); free(network->input_z[pos][0][0]); free(network->input[pos][0]); free(network->input_z[pos][0]); free(network->input[pos]); free(network->input_z[pos]); } void free_2d_average_pooling(Network* network, int pos) { free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]); } void free_convolution(Network* network, int pos) { Kernel_cnn* k_pos = network->kernel[pos]->cnn; int c = k_pos->columns; int k_size = k_pos->k_size; int r = k_pos->rows; int bias_size = network->width[pos+1]; // Not sure of the value free_a_cube_input_layer(network, pos+1, network->depth[pos+1], network->width[pos+1]); for (int i=0; i < c; i++) { for (int j=0; j < bias_size; j++) { free(k_pos->bias[i][j]); free(k_pos->d_bias[i][j]); } free(k_pos->bias[i]); free(k_pos->d_bias[i]); } free(k_pos->bias); free(k_pos->d_bias); for (int i=0; i < r; i++) { for (int j=0; j < c; j++) { for (int k=0; k < k_size; k++) { free(k_pos->w[i][j][k]); free(k_pos->d_w[i][j][k]); } free(k_pos->w[i][j]); free(k_pos->d_w[i][j]); } free(k_pos->w[i]); free(k_pos->d_w[i]); } free(k_pos->w); free(k_pos->d_w); free(k_pos); } void free_dense(Network* network, int pos) { free_a_line_input_layer(network, pos+1); Kernel_nn* k_pos = network->kernel[pos]->nn; int dim = k_pos->input_units; for (int i=0; i < dim; i++) { free(k_pos->weights[i]); free(k_pos->d_weights[i]); } free(k_pos->weights); free(k_pos->d_weights); free(k_pos->bias); free(k_pos->d_bias); free(k_pos); } void free_dense_linearisation(Network* network, int pos) { free_a_line_input_layer(network, pos+1); Kernel_nn* k_pos = network->kernel[pos]->nn; int dim = k_pos->input_units; for (int i=0; i < dim; i++) { free(k_pos->weights[i]); free(k_pos->d_weights[i]); } free(k_pos->weights); free(k_pos->d_weights); free(k_pos->bias); free(k_pos->d_bias); free(k_pos); } void free_network_creation(Network* network) { free_a_cube_input_layer(network, 0, network->depth[0], network->width[0]); for (int i=0; i < network->max_size-1; i++) free(network->kernel[i]); free(network->width); free(network->depth); free(network->kernel); free(network->input); free(network->input_z); free(network); } void free_network(Network* network) { for (int i=network->size-2; i>=0; i--) { if (network->kernel[i]->cnn != NULL) { // Convolution free_convolution(network, i); } else if (network->kernel[i]->nn != NULL) { if (network->kernel[i]->linearisation == 0) { // Dense non linearised free_dense(network, i); } else { // Dense lineariation free_dense_linearisation(network, i); } } else { // Pooling free_2d_average_pooling(network, i); } } free_network_creation(network); }